Investigation of fractional diabetes model involving glucose-insulin alliance scheme

被引:10
|
作者
Khirsariya, Sagar R. [1 ]
Rao, Snehal B. [2 ]
Hathiwala, Gautam S. [1 ]
机构
[1] Marwadi Univ, Dept Math, Rajkot Morbi Rd, Rajkot 360003, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Fac Technol & Engn, Dept Appl Math, Vadodara 390001, Gujarat, India
关键词
Fractional diabetes model; Atangana-Baleanu fractional derivative; Adomian decomposition Laplace transform method; Stability analysis; 92Bxx; 92Dxx; DECOMPOSITION METHOD;
D O I
10.1007/s40435-023-01293-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ultimate aim of this study is to develop and analyze a comprehensive regulatory framework for managing glucose and insulin in blood in the presence of diabetes mellitus. This innovative mathematical model of diabetes is demonstrated and examined in fractional order by involving ABC fractional derivative. This whole framework is worked out using a semi-analytical technique, namely the Adomian decomposition Laplace transform method. To prove the efficiency of this ADLTM technique, the results are compared with other classical methods, viz. homotopy perturbation transform method and modified homotopy analysis transform method. Using the Banach fixed point theorem, the existence and stability analysis of the solution has been proved. Certain figures and tables are illustrated for this fractional diabetes model with some fractional order. We used the Maple software to generate all the numerics and graphical plots. This detailed investigation also explores how well the level of glucose and insulin affects the dynamics of disease infection.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] Personalization of a Glucose-Insulin Model for Diabetic Patients
    O'Brien, Richard T., Jr.
    Dilks, A. Eileen
    Lukas, Darius J.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2151 - 2156
  • [22] Practical identification of a glucose-insulin dynamics model
    Scharbarg, E.
    Califano, C.
    Le Carpentier, E.
    Moog, C. H.
    IFAC PAPERSONLINE, 2020, 53 (02): : 16069 - 16074
  • [23] Effect of Medication in a Glucose-Insulin Mathematical Model
    Seifert, Evandro G.
    Trobia, Jose
    Cruziniani, Fatima E.
    de Souza, Diogo L. M.
    Sayari, Elaheh
    Gabrick, Enrique C.
    Iarosz, Kelly C.
    Szezech Jr, Jose D.
    Caldas, Ibere L.
    Batista, Antonio M.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2024, 13 (04) : 795 - 803
  • [24] DYNAMICS OF A STOCHASTIC GLUCOSE-INSULIN MODEL WITH IMPULSIVE INJECTION OF INSULIN
    Lan, Guijie
    Ye, Cong
    Zhang, Shuwen
    Wei, Chunjin
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2020,
  • [25] A real time simulation model of glucose-insulin metabolism for type I diabetes patients
    Mougiakakou, S. G.
    Prountzou, K.
    Nikita, K. S.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 298 - 301
  • [26] Modelling glucose-insulin feedback signal interchanges involving β-cells with delays
    Sarika, Warunee
    Lenbury, Yongwimon
    Kumnungkit, Kanchana
    Kunphasuruang, Wannapa
    SCIENCEASIA, 2008, 34 (01): : 77 - 86
  • [27] Optimal control of glucose-insulin dynamics via delay differential model with fractional-order
    Rihan, Fathalla A.
    Udhayakumar, K.
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 243 - 255
  • [28] Investigation of stability in a two-delay model of the ultradian oscillations in glucose-insulin regulation
    Huard, B.
    Easton, J. F.
    Angelova, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) : 211 - 222
  • [29] Chaos and Its Control in a Fractional Order Glucose-insulin Regulatory System
    Dousseh, P. Y.
    Hinvi, L. A.
    Miwadinou, C. H.
    Monwanou, A., V
    Orou, J. B. Chabi
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2022, 11 (04) : 877 - 895
  • [30] Dynamical analysis of fractional-order of IVGTT glucose-insulin interaction
    Alshehri, Mansoor H.
    Saber, Sayed
    Duraihem, Faisal Z.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) : 1123 - 1140