Dynamical analysis of fractional-order of IVGTT glucose-insulin interaction

被引:18
|
作者
Alshehri, Mansoor H. [3 ]
Saber, Sayed [1 ,2 ]
Duraihem, Faisal Z. [3 ]
机构
[1] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
[2] Albaha Univ, Fac Sci & Arts Baljurashi, Dept Math, Al Bahah, Saudi Arabia
[3] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
fractional-order; glucose-insulin interaction; IVGTT; mathematical modeling; QUANTITATIVE ESTIMATION; MODEL; SENSITIVITY;
D O I
10.1515/ijnsns-2020-0201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a fractional-order model of glucose-insulin interaction. In Caputo's meaning, the fractional derivative is defined. This model arises in Bergman's minimal model, used to describe blood glucose and insulin metabolism, after intravenous tolerance testing. We showed that the established model has existence, uniqueness, non-negativity, and boundedness of fractional-order model solutions. The model's local and global stability was investigated. The parametric conditions under which a Hopf bifurcation occurs in the positive steady state for a proposed model are studied. Moreover, we present a numerical treatment for solving the proposed fractional model using the generalized Euler method (GEM). The model's local stability and Hopf bifurcation of the proposed model in sense of the GEM are presented. Finally, numerical simulations of the model using the Adam-Bashforth-Moulton predictor corrector scheme and the GEM have been presented to support our analytical results.
引用
收藏
页码:1123 / 1140
页数:18
相关论文
共 50 条
  • [1] Numerical Technique for Solving Fractional-order of IVGTT Glucose-insulin Interaction
    Abdelkawy, M. A.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 739 - 751
  • [2] On the fractional-order glucose-insulin interaction
    Ahmed, Ghada A.
    AIMS MATHEMATICS, 2023, 8 (07): : 15824 - 15843
  • [3] Analysis of IVGTT glucose-insulin interaction models with time delay
    Li, JX
    Kuang, Y
    Li, BT
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2001, 1 (01): : 103 - 124
  • [4] Bifurcation analysis in a delay model of IVGTT glucose-insulin interaction
    Mohabati, Fateme
    Molaei, MohammadReza
    THEORY IN BIOSCIENCES, 2020, 139 (01) : 9 - 20
  • [5] An Unknown Input Fractional-Order Observer Design for Fractional-Order Glucose-Insulin System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    Schneider, Jochen G.
    Knauf, Nicolas
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [6] Static output feedback ℋ∞ control for a fractional-order glucose-insulin system
    Ibrahima N’Doye
    Holger Voos
    Mohamed Darouach
    Jochen G. Schneider
    International Journal of Control, Automation and Systems, 2015, 13 : 798 - 807
  • [7] A Caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data
    Alshehri, Mansoor H.
    Duraihem, Faisal Z.
    Alalyani, Ahmad
    Saber, Sayed
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 26 - 36
  • [8] Static Output Feedback H∞ Control for a Fractional-order Glucose-insulin System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    Schneider, Jochen G.
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2015, 13 (04) : 798 - 807
  • [9] Static Output Feedback Stabilization of Nonlinear Fractional-Order Glucose-Insulin System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    Schneider, Jochen G.
    Knauf, Nicolas
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [10] On the Solution of a Nonlinear Fractional-Order Glucose-Insulin System Incorporating β-cells Compartment
    Alalyani, Ahmad
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 1 - 12