Prescreening and Triage of COVID-19 Patients Through Chest X-Ray Images Using Deep Learning Model

被引:2
|
作者
Rajendran, Sukumar [1 ]
Panneerselvam, Ramesh Kumar [2 ]
Kumar, Purushothaman Janaki [1 ]
Rajasekaran, Vijay Anand [1 ]
Suganya, Pandy [1 ]
Mathivanan, Sandeep Kumar [1 ]
Jayagopal, Prabhu [1 ]
机构
[1] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore, India
[2] V R Siddhartha Engn Coll, Dept Comp Sci & Engn, Vijayawada, India
关键词
COVID-19; deep learning; diagnosis; lung; screening;
D O I
10.1089/big.2022.0028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning models deliver a fast diagnosis during triage prescreening for COVID-19 patients, reducing waiting time for hospital admission during health emergency scenarios. The Ministry of health and family welfare government of India provides guidelines from the Indian Council of Medical Research (ICMR) for triage requirements and emergency response with faster allotment of oxygen beds for COVID-19 patients requiring immediate treatment in Tamil Nadu, India. A combination of pretrained models provides a faster screening rate and finds patients with severe lung infections who need to be attended to and allotted oxygen beds. Deep learning (DL) algorithms need to be accurate in triaging undifferentiated patients entering the emergency care system (ECS). The major goal of this work is to analyze the accuracy of machine learning approaches in their application to triage the acuity of patients arriving in the ECS. The proposed triage model has an accuracy of 93% in classifying COVID/non-COVID patients. The proposed triage DL model effectively reduces the time for the triage procedure and streamlines screening and allocation of beds for patients with high risk.
引用
收藏
页码:408 / 419
页数:12
相关论文
共 50 条
  • [31] Deep learning model to predict the need for mechanical ventilation using chest X-ray images in hospitalised patients with COVID-19
    Kulkarni, Anoop R.
    Athavale, Ambarish M.
    Sahni, Ashima
    Sukhal, Shashvat
    Saini, Abhimanyu
    Itteera, Mathew
    Zhukovsky, Sara
    Vernik, Jane
    Abraham, Mohan
    Joshi, Amit
    Amarah, Amatur
    Ruiz, Juan
    Hart, Peter D.
    Kulkarni, Hemant
    BMJ INNOVATIONS, 2021, 7 (02) : 261 - 270
  • [32] Deep Learn in for Screening COVID-19 using Chest X-Ray Images
    Basu, Sanhita
    Mitra, Sushmita
    Saha, Nilanjan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2521 - 2527
  • [33] Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
    Minaee, Shervin
    Kafieh, Rahele
    Sonka, Milan
    Yazdani, Shakib
    Soufi, Ghazaleh Jamalipour
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [34] Chest x-ray images: transfer learning model in COVID-19 detection
    Mao, Siqi
    Kulbayeva, Saltanat
    Osadchuk, Mikhail
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2025, 31 (01)
  • [35] Deep-CoV: An integrated deep learning model to detect COVID-19 using chest X-ray and CT images
    Roy, Sanjib
    Das, Ayan Kumar
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (02) : 369 - 400
  • [36] Detection of COVID-19 Using Deep Learning on X-Ray Images
    Alotaibi, Munif
    Alotaibi, Bandar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03): : 885 - 898
  • [37] Application of Deep Learning model (DeepCOVID-19) for detecting COVID-19 cases using chest X-ray images
    Cuong Do
    Lan Vu
    APPLICATIONS OF MACHINE LEARNING 2020, 2020, 11511
  • [38] Optimal Ensemble learning model for COVID-19 detection using chest X-ray images
    Balasubramaniam, S.
    Kumar, K. Satheesh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [39] COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning
    Haghanifar, Arman
    Majdabadi, Mahdiyar Molahasani
    Choi, Younhee
    Deivalakshmi, S.
    Ko, Seokbum
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30615 - 30645
  • [40] COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning
    Arman Haghanifar
    Mahdiyar Molahasani Majdabadi
    Younhee Choi
    S. Deivalakshmi
    Seokbum Ko
    Multimedia Tools and Applications, 2022, 81 : 30615 - 30645