Prescreening and Triage of COVID-19 Patients Through Chest X-Ray Images Using Deep Learning Model

被引:2
|
作者
Rajendran, Sukumar [1 ]
Panneerselvam, Ramesh Kumar [2 ]
Kumar, Purushothaman Janaki [1 ]
Rajasekaran, Vijay Anand [1 ]
Suganya, Pandy [1 ]
Mathivanan, Sandeep Kumar [1 ]
Jayagopal, Prabhu [1 ]
机构
[1] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore, India
[2] V R Siddhartha Engn Coll, Dept Comp Sci & Engn, Vijayawada, India
关键词
COVID-19; deep learning; diagnosis; lung; screening;
D O I
10.1089/big.2022.0028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning models deliver a fast diagnosis during triage prescreening for COVID-19 patients, reducing waiting time for hospital admission during health emergency scenarios. The Ministry of health and family welfare government of India provides guidelines from the Indian Council of Medical Research (ICMR) for triage requirements and emergency response with faster allotment of oxygen beds for COVID-19 patients requiring immediate treatment in Tamil Nadu, India. A combination of pretrained models provides a faster screening rate and finds patients with severe lung infections who need to be attended to and allotted oxygen beds. Deep learning (DL) algorithms need to be accurate in triaging undifferentiated patients entering the emergency care system (ECS). The major goal of this work is to analyze the accuracy of machine learning approaches in their application to triage the acuity of patients arriving in the ECS. The proposed triage model has an accuracy of 93% in classifying COVID/non-COVID patients. The proposed triage DL model effectively reduces the time for the triage procedure and streamlines screening and allocation of beds for patients with high risk.
引用
收藏
页码:408 / 419
页数:12
相关论文
共 50 条
  • [21] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EVOLVING SYSTEMS, 2022, 13 (04) : 519 - 533
  • [22] CoviXNet: A novel and efficient deep learning model for detection of COVID-19 using chest X-Ray images
    Srivastava, Gaurav
    Chauhan, Aninditaa
    Jangid, Mahesh
    Chaurasia, Sandeep
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [23] Classification of Chest X-ray Images to Diagnose Covid-19 using Deep Learning Techniques
    Santos Silva, Isabel Heloise
    Barros Negreiros, Ramoni Reus
    Firmino Alves, Andre Luiz
    Gomes Valadares, Dalton Cezane
    Perkusich, Angelo
    WINSYS : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE SYSTEMS, 2022, : 93 - 100
  • [24] Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images
    Kumar, N.
    Gupta, M.
    Gupta, D.
    Tiwari, S.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (1) : 469 - 478
  • [25] Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
    Sampen, Denilson
    Lavarello, Roberto
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [26] Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images
    N. Kumar
    M. Gupta
    D. Gupta
    S. Tiwari
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 469 - 478
  • [27] Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Alsafari, Safa
    Yafoz, Ayman
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5255 - 5270
  • [28] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Tarun Agrawal
    Prakash Choudhary
    Evolving Systems, 2022, 13 : 519 - 533
  • [29] COVID-19 detection in chest X-ray images using deep boosted hybrid learning
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Hassan, Mehdi
    Lee, Yeon Soo
    Alam, Jamshed
    Basit, Abdul
    Zubair, Saima
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [30] SpiCoNET: A Hybrid Deep Learning Model to Diagnose COVID-19 and Pneumonia Using Chest X-Ray Images
    Tumen, Vedat
    TRAITEMENT DU SIGNAL, 2022, 39 (04) : 1169 - 1180