Pseudospectra, stability radii and their relationship with backward error for structured nonlinear eigenvlaue problems

被引:0
|
作者
Ahmad, Sk. Safique [1 ,3 ]
Nag, Gyan Swarup [2 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore, Madhya Pradesh, India
[2] IIT Indore, Dept Math, Indore, India
[3] Indian Inst Technol Indore, Dept Chem, Simrol 453552, Madhya Pradesh, India
关键词
eigenvalue backward error; Hermitian; nonlinear eigenvalue problem; perturbation theory; skew-hermitian; structured mapping problem; POLYNOMIAL EIGENVALUE PROBLEMS; MATRIX PENCILS; EQUATIONS; REAL;
D O I
10.1002/mma.9976
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses pseudospectra and stability radii for structured nonlinear matrix functions, such as Hermitian, skew-Hermitian, H-even, H-odd, complex symmetric, and complex skew-symmetric. To compute pseudospectra and stability radii, eigenvalue backward error is required. Hence, we initially present the structured eigenvalue backward error. Subsequently, we compute the structured pseudospectra using the obtained results for the eigenvalue backward error of a class of structured nonlinear matrix functions. Finally, we discuss the stability radii of the above-structured problems arising in different applications. The paper also generalizes the results on the eigenvalue backward error of matrix polynomials in the literature for the above structures.
引用
收藏
页码:7372 / 7396
页数:25
相关论文
共 21 条
  • [1] BACKWARD ERRORS AND PSEUDOSPECTRA FOR STRUCTURED NONLINEAR EIGENVALUE PROBLEMS
    Ahmad, Sk. Safique
    Mehrmann, Volker
    OPERATORS AND MATRICES, 2016, 10 (03): : 539 - 556
  • [2] Structured pseudospectra for nonlinear eigenvalue problems
    Wagenknecht, T.
    Michiels, W.
    Green, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (02) : 245 - 259
  • [3] Structured Pseudospectra in Problems of Spatial Stability of Boundary Layers
    Demyanko, K. V.
    Nechepurenko, Yu. M.
    Zasko, G. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (08) : 1785 - 1795
  • [4] Structured backward error for palindromic polynomial eigenvalue problems
    Li, Ren-Cang
    Lin, Wen-Wei
    Wang, Chern-Shuh
    NUMERISCHE MATHEMATIK, 2010, 116 (01) : 95 - 122
  • [5] Structured backward error and condition of generalized eigenvalue problems
    Higham, DJ
    Higham, NJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) : 493 - 512
  • [6] Structured backward error for palindromic polynomial eigenvalue problems
    Ren-Cang Li
    Wen-Wei Lin
    Chern-Shuh Wang
    Numerische Mathematik, 2010, 116 : 95 - 122
  • [7] STRUCTURED BACKWARD ERROR ANALYSIS OF LINEARIZED STRUCTURED POLYNOMIAL EIGENVALUE PROBLEMS
    Dopico, Froilan M.
    Perez, Javier
    Van Dooren, Paul
    MATHEMATICS OF COMPUTATION, 2019, 88 (317) : 1189 - 1228
  • [8] Structured backward error analysis for generalized saddle point problems
    Zheng, Bing
    Lv, Peng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
  • [9] Structured backward error analysis for sparse polynomial eigenvalue problems
    Zhang, Kaijun
    Su, Yangfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) : 3073 - 3082
  • [10] Structured backward error analysis for generalized saddle point problems
    Bing Zheng
    Peng Lv
    Advances in Computational Mathematics, 2020, 46