Structured Pseudospectra in Problems of Spatial Stability of Boundary Layers

被引:0
|
作者
Demyanko, K. V. [1 ,2 ]
Nechepurenko, Yu. M. [1 ,2 ]
Zasko, G. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[2] Russian Acad Sci, Keldysh Inst Appl Math, Moscow 125047, Russia
基金
俄罗斯科学基金会;
关键词
structured pseudospectra; resolvent; spatial stability; boundary layer; G & ouml; rtler vortices; Tollmien-Schlichting waves; SPECTRAL METHODS; DICHOTOMY; DISTURBANCES;
D O I
10.1134/S0965542524700957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to a numerical analysis of the sensitivity of the spatial stability characteristics of boundary layers to uncertainties of the main flow. It is proposed to use structured pseudospectra for this purpose. It is shown that the obtained estimates are much more accurate than estimates based on an unstructured pseudospectrum. The presentation is based on an example of the flow of a viscous incompressible fluid over a slightly concave surface with flow parameters favorable for the development of the G & ouml;rtler vortices and Tollmien-Schlichting waves.
引用
收藏
页码:1785 / 1795
页数:11
相关论文
共 50 条
  • [1] Structured pseudospectra for nonlinear eigenvalue problems
    Wagenknecht, T.
    Michiels, W.
    Green, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (02) : 245 - 259
  • [2] Pseudospectra, stability radii and their relationship with backward error for structured nonlinear eigenvlaue problems
    Ahmad, Sk. Safique
    Nag, Gyan Swarup
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (09) : 7372 - 7396
  • [3] PSEUDOSPECTRA OF SEMICLASSICAL BOUNDARY VALUE PROBLEMS
    Galkowski, Jeffrey
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2015, 14 (02) : 405 - 449
  • [4] Structured pseudospectra for polynomial eigenvalue problems, with applications
    Tisseur, F
    Higham, NJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) : 187 - 208
  • [5] BACKWARD ERRORS AND PSEUDOSPECTRA FOR STRUCTURED NONLINEAR EIGENVALUE PROBLEMS
    Ahmad, Sk. Safique
    Mehrmann, Volker
    OPERATORS AND MATRICES, 2016, 10 (03): : 539 - 556
  • [6] Structured pseudospectra and random eigenvalues problems in vibrating systems
    Wagenknecht, T.
    Green, K.
    Adhikari, S.
    Michiels, W.
    AIAA Journal, 2006, 44 (10): : 2404 - 2414
  • [7] Structured pseudospectra and random eigenvalues problems in vibrating. systems
    Wagenknecht, T.
    Green, K.
    Adhikari, S.
    Michiels, W.
    AIAA JOURNAL, 2006, 44 (10) : 2404 - 2414
  • [8] Approximated structured pseudospectra
    Noschese, Silvia
    Reichel, Lothar
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (02)
  • [9] A note on structured pseudospectra
    Graillat, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 191 (01) : 68 - 76
  • [10] Structured pseudospectra and structured sensitivity of eigenvalues
    Du, Kui
    Wei, Yimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (02) : 502 - 519