Pseudospectra, stability radii and their relationship with backward error for structured nonlinear eigenvlaue problems

被引:0
|
作者
Ahmad, Sk. Safique [1 ,3 ]
Nag, Gyan Swarup [2 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore, Madhya Pradesh, India
[2] IIT Indore, Dept Math, Indore, India
[3] Indian Inst Technol Indore, Dept Chem, Simrol 453552, Madhya Pradesh, India
关键词
eigenvalue backward error; Hermitian; nonlinear eigenvalue problem; perturbation theory; skew-hermitian; structured mapping problem; POLYNOMIAL EIGENVALUE PROBLEMS; MATRIX PENCILS; EQUATIONS; REAL;
D O I
10.1002/mma.9976
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses pseudospectra and stability radii for structured nonlinear matrix functions, such as Hermitian, skew-Hermitian, H-even, H-odd, complex symmetric, and complex skew-symmetric. To compute pseudospectra and stability radii, eigenvalue backward error is required. Hence, we initially present the structured eigenvalue backward error. Subsequently, we compute the structured pseudospectra using the obtained results for the eigenvalue backward error of a class of structured nonlinear matrix functions. Finally, we discuss the stability radii of the above-structured problems arising in different applications. The paper also generalizes the results on the eigenvalue backward error of matrix polynomials in the literature for the above structures.
引用
收藏
页码:7372 / 7396
页数:25
相关论文
共 21 条