Regression with Variable Dimension Covariates

被引:0
|
作者
Mueller, Peter [1 ,4 ]
Quintana, Fernando Andres [2 ,5 ]
Page, Garritt L. [3 ,6 ]
机构
[1] Univ Texas Austin, Austin, TX USA
[2] Pontificia Univ Catolica Chile, Santiago, Chile
[3] Brigham Young Univ, Provo, UT USA
[4] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[5] Pontificia Univ Catolica Chile, Dept Stat, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[6] Brigham Young Univ, Dept Stat, 2152 WVB, Provo, UT 84602 USA
来源
关键词
Density regression; Clustering; Partition; Missing data; C11; H51; GENERALIZED LINEAR-MODELS; MISSING DATA;
D O I
10.1007/s13171-023-00329-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Regression is one of the most fundamental statistical inference problems. A broad definition of regression problems is as estimation of the distribution of an outcome using a family of probability models indexed by covariates. Despite the ubiquitous nature of regression problems and the abundance of related methods and results there is a surprising gap in the literature. There are no well established methods for regression with a varying dimension covariate vectors, despite the common occurrence of such problems. In this paper we review some recent related papers proposing varying dimension regression by way of random partitions.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [41] Proportional hazards regression with missing covariates
    Chen, HY
    Little, RJA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) : 896 - 908
  • [42] High-dimensional local polynomial regression with variable selection and dimension reduction
    Kin Yap Cheung
    Stephen M. S. Lee
    Statistics and Computing, 2024, 34
  • [43] Misclassification in logistic regression with discrete covariates
    Davidov, O
    Faraggi, D
    Reiser, B
    BIOMETRICAL JOURNAL, 2003, 45 (05) : 541 - 553
  • [44] STRUCTURED LASSO FOR REGRESSION WITH MATRIX COVARIATES
    Zhao, Junlong
    Leng, Chenlei
    STATISTICA SINICA, 2014, 24 (02) : 799 - 814
  • [45] Quantile regression when the covariates are functions
    Cardot, H
    Crambes, C
    Sarda, P
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (07) : 841 - 856
  • [46] A significance test for covariates in nonparametric regression
    Lavergne, Pascal
    Maistre, Samuel
    Patilea, Valentin
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 643 - 678
  • [47] Methods for missing covariates in logistic regression
    Paik, M.C.
    Communications in Statistics Part B: Simulation and Computation, 2000, 29 (01): : 1 - 19
  • [48] Adjusting for Covariates in Logistic Regression Models
    Xing, Chao
    Xing, Guan
    GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 937 - 937
  • [49] Including Covariates in the Regression Discontinuity Design
    Froelich, Markus
    Huber, Martin
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (04) : 736 - 748
  • [50] A Product Partition Model With Regression on Covariates
    Mueller, Peter
    Quintana, Fernando
    Rosner, Gary L.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 260 - 278