Regression with Variable Dimension Covariates

被引:0
|
作者
Mueller, Peter [1 ,4 ]
Quintana, Fernando Andres [2 ,5 ]
Page, Garritt L. [3 ,6 ]
机构
[1] Univ Texas Austin, Austin, TX USA
[2] Pontificia Univ Catolica Chile, Santiago, Chile
[3] Brigham Young Univ, Provo, UT USA
[4] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[5] Pontificia Univ Catolica Chile, Dept Stat, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[6] Brigham Young Univ, Dept Stat, 2152 WVB, Provo, UT 84602 USA
来源
关键词
Density regression; Clustering; Partition; Missing data; C11; H51; GENERALIZED LINEAR-MODELS; MISSING DATA;
D O I
10.1007/s13171-023-00329-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Regression is one of the most fundamental statistical inference problems. A broad definition of regression problems is as estimation of the distribution of an outcome using a family of probability models indexed by covariates. Despite the ubiquitous nature of regression problems and the abundance of related methods and results there is a surprising gap in the literature. There are no well established methods for regression with a varying dimension covariate vectors, despite the common occurrence of such problems. In this paper we review some recent related papers proposing varying dimension regression by way of random partitions.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [31] Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates
    Ding, Xianwen
    Yang, Zhihuang
    MATHEMATICS, 2024, 12 (20)
  • [32] Dimension reduction for covariates in network data
    Zhao, Junlong
    Liu, Xiumin
    Wang, Hansheng
    Leng, Chenlei
    BIOMETRIKA, 2022, 109 (01) : 85 - 102
  • [33] Variable selection in the single-index quantile regression model with high-dimensional covariates
    Kuruwita, C. N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) : 1120 - 1132
  • [34] Cox Regression with Covariates Missing Not at Random
    Cook V.J.
    Hu X.J.
    Swartz T.B.
    Statistics in Biosciences, 2011, 3 (2) : 208 - 222
  • [35] Machine Learning Predictions as Regression Covariates
    Fong, Christian
    Tyler, Matthew
    POLITICAL ANALYSIS, 2021, 29 (04) : 467 - 484
  • [36] Methods for missing covariates in logistic regression
    Paik, MC
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2000, 29 (01) : 1 - 19
  • [37] Lasso in infinite dimension: application to variable selection in functional multivariate linear regression
    Roche, Angelina
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3357 - 3405
  • [38] Cox regression with dependent error in covariates
    Huang, Yijian
    Wang, Ching-Yun
    BIOMETRICS, 2018, 74 (01) : 118 - 126
  • [39] Parametric modal regression with error in covariates
    Liu, Qingyang
    Huang, Xianzheng
    BIOMETRICAL JOURNAL, 2024, 66 (01)
  • [40] Differentially Private Regression with Unbounded Covariates
    Milionis, Jason
    Kalavasis, Alkis
    Fotakis, Dimitris
    Ioannidis, Stratis
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151