INVARIANT TORI FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION WITH HIGHER ORDER NONLINEARITY

被引:0
|
作者
Gao, Meina [1 ]
机构
[1] Shanghai Polytech Univ, Sch Math Phys & Stat, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM theory; invariant tori; Hamiltonian derivative nonlinear wave equation; QUASI-PERIODIC SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; KAM THEOREM; PERTURBATIONS;
D O I
10.3934/cpaa.2023033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the Hamiltonian derivative wave equation with higher order nonlinearity ytt - yxx + my + (Dy)(5) = 0, x is an element of T :- R/2 pi Z, where m > 0 is a potential and D := root -partial derivative xx + m. We will prove that, for any integer b >= 2, the above equation admits many small amplitude quasi-periodic solutions corresponding to b -dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form.
引用
收藏
页码:1429 / 1455
页数:27
相关论文
共 50 条
  • [1] Existence of higher dimensional invariant tori for Hamiltonian systems
    Cong, FZ
    Li, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) : 255 - 267
  • [2] Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy
    Yuecai Han
    Yong Li
    Yingfei Yi
    Annales Henri Poincaré, 2010, 10 : 1419 - 1436
  • [3] Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy
    Han, Yuecai
    Li, Yong
    Yi, Yingfei
    ANNALES HENRI POINCARE, 2010, 10 (08): : 1419 - 1436
  • [4] On a KdV equation with higher-order nonlinearity: Traveling wave solutions
    Gomez Sierra, Cesar A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5330 - 5332
  • [5] Invariant tori for Hamiltonian PDE
    Craig, Walter
    Nonlinear Dynamics and Evolution Equations, 2006, 48 : 53 - 66
  • [6] KAM THEORY FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION
    Berti, Massimiliano
    Biasco, Luca
    Procesi, Michela
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2013, 46 (02): : 301 - 373
  • [7] Invariant tori for commuting Hamiltonian PDEs
    Bambusi, D.
    Bardelle, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (06) : 2484 - 2505
  • [8] Invariant tori in Hamiltonian systems with impacts
    Zharnitsky, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (02) : 289 - 302
  • [9] Invariant Tori in Hamiltonian Systems with Impacts
    Vadim Zharnitsky
    Communications in Mathematical Physics, 2000, 211 : 289 - 302
  • [10] HIGHER-ORDER ROGUE WAVE DYNAMICS FOR A DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Zhang, Yongshuai
    Guo, Lijuan
    Chabchoub, Amin
    He, Jingsong
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (1-2):