Early committed polarization of intracellular tension in response to cell shape determines the osteogenic differentiation of mesenchymal stromal cells

被引:9
|
作者
Wu, Ming-Chung [1 ]
Yu, Helen Wenshin [1 ,2 ]
Chen, Yin-Quan [3 ]
Ou, Meng-Hsin [1 ]
Serrano, Ricardo [4 ,5 ,6 ,7 ]
Huang, Guan-Lin [1 ]
Wang, Yang-Kao [8 ]
Lin, Kung-hui [9 ]
Fan, Yu-Jui [10 ]
Wuj, Chi-Chang [11 ]
del Alamo, Juan C. [4 ,5 ,6 ]
Chiou, Arthur [2 ]
Chien, Shu [4 ,5 ]
Kuo, Jean-Cheng [1 ,3 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Biochem & Mol Biol, Taipei 11221, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Biophoton, Taipei 11221, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Canc Progress Res Ctr, Taipei 11221, Taiwan
[4] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Inst Engn Med, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[7] Stanford Univ, Stanford Cardiovasc Inst, Sch Med, Stanford, CA 94305 USA
[8] Natl Cheng Kung Univ, Dept Cell Biol & Anat, Tainan 70101, Taiwan
[9] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[10] Taipei Med Univ, Sch Biomed Engn, Taipei 110, Taiwan
[11] Natl Chin Yi Univ Technol, Dept Elect Engn, Taichung, Taiwan
关键词
Focal adhesions; Geometric cue; Mesenchymal stromal cells; Osteogenesis; Contractile force; FOCAL ADHESIONS; EXTRACELLULAR-MATRIX; STRESS FIBERS; STEM-CELLS; ACTIN; MECHANOTRANSDUCTION; ORGANIZATION; ARCHITECTURE; INTEGRINS; PATHWAY;
D O I
10.1016/j.actbio.2022.10.052
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commit-ment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direc-tion, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, gen-erated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskele-tal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision.Statement of SignificanceWe decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the mat -uration state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dy-namic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which ap-propriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.(c) 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页码:287 / 301
页数:15
相关论文
共 50 条
  • [41] Induction of Osteogenic Differentiation of Multipotent Mesenchymal Stromal Cells from Human Adipose Tissue
    Logovskaya, L. V.
    Bukharova, T. B.
    Volkov, A. V.
    Vikhrova, E. B.
    Makhnach, O. V.
    Goldshtein, D. V.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2013, 155 (01) : 145 - 150
  • [42] AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth
    Battula, V. Lokesh
    Le, Phuong M.
    Sun, Jeffrey C.
    Nguyen, Khoa
    Yuan, Bin
    Zhou, Ximin
    Sonnylal, Sonali
    McQueen, Teresa
    Ruvolo, Vivian
    Michel, Keith A.
    Ling, Xiaoyang
    Jacamo, Rodrigo
    Shpall, Elizabeth
    Wang, Zhiqiang
    Rao, Arvind
    Al-Atrash, Gheath
    Konopleva, Marina
    Davis, R. Eric
    Harrington, Melvyn A.
    Cahill, Catherine W.
    Bueso-Ramos, Carlos
    Andreeff, Michael
    JCI INSIGHT, 2017, 2 (13)
  • [43] Uremic Serum Impairs Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stromal Cells
    Della Bella, Elena
    Pagani, Stefania
    Giavaresi, Gianluca
    Capelli, Irene
    Comai, Giorgia
    Donadei, Chiara
    Cappuccilli, Maria
    La Manna, Gaetano
    Fini, Milena
    JOURNAL OF CELLULAR PHYSIOLOGY, 2017, 232 (08) : 2201 - 2209
  • [44] Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed
    Ferroni, Letizia
    Tocco, Ilaria
    De Pieri, Andrea
    Menarin, Martina
    Fermi, Enrico
    Piattelli, Adriano
    Gardin, Chiara
    Zavan, Barbara
    LIFE SCIENCES, 2016, 152 : 44 - 51
  • [45] Ultrastructural changes during osteogenic differentiation in mesenchymal stromal cells cultured in alginate hydrogel
    Jakub Grzesiak
    Agnieszka Śmieszek
    Krzysztof Marycz
    Cell & Bioscience, 7
  • [46] Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells
    Barradas, Ana M. C.
    Monticone, Veronica
    Hulsman, Marc
    Danoux, Charlene
    Fernandes, Hugo
    Birgani, Zeinab Tahmasebi
    Barrere-de Groot, Florence
    Yuan, Huipin
    Reinders, Marcel
    Habibovic, Pamela
    van Blitterswijk, Clemens
    de Boer, Jan
    INTEGRATIVE BIOLOGY, 2013, 5 (07) : 920 - 931
  • [47] DUX4 EXPRESSION DURING OSTEOGENIC DIFFERENTIATION IN MESENCHYMAL STROMAL CELLS (MSCS)
    de Ryhove, L. de la Kethulle
    Ansseau, E.
    Geens, M.
    Coppee, F.
    Sermon, K. D.
    Lagneaux, L.
    Belayew, A.
    CYTOTHERAPY, 2014, 16 (04) : S65 - S65
  • [48] Surface nanostructuring of bioresorbable implants to induce osteogenic differentiation of human mesenchymal stromal cells
    Sorgato, Marco
    Guidi, Enrica
    Conconi, Maria Teresa
    Lucchetta, Giovanni
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2021, 70 (01) : 463 - 466
  • [49] Convergence of transcriptional and epigenetic programs regulating osteogenic differentiation from mesenchymal stromal cells
    Gordon, Jonathan
    Wu, Hai
    Whitfield, Troy
    Tye, Coralee
    Van Wijnen, Andre
    Stein, Janet
    Stein, Gary
    Lian, Jane
    JOURNAL OF BONE AND MINERAL RESEARCH, 2014, 29 : S39 - S39
  • [50] Osteogenic Differentiation of Human Umbilical Cord Mesenchymal Stromal Cells in Polyglycolic Acid Scaffolds
    Wang, Limin
    Dormer, Nathan H.
    Bonewald, Lynda F.
    Detamore, Michael S.
    TISSUE ENGINEERING PART A, 2010, 16 (06) : 1937 - 1948