Wind Power Scenario Generation Using Graph Convolutional Generative Adversarial Network

被引:2
|
作者
Cho, Young-ho [1 ]
Liu, Shaohui [1 ]
Zhu, Hao [1 ]
Lee, Duehee [2 ]
机构
[1] Univ Texas Austin, Chandra Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Konkuk Univ, Dept Elect Engn, Seoul, South Korea
关键词
Wind power scenario; Graph Convolutional Network; Generative adversarial network; Spatio-temporal data generation;
D O I
10.1109/PESGM52003.2023.10253042
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Generating wind power scenarios is very important for studying the impacts of multiple wind farms that are interconnected to the grid. We develop a graph convolutional generative adversarial network (GCGAN) approach by leveraging GAN's capability in generating large number of realistic scenarios without using statistical modeling. Unlike existing GAN-based wind power data generation approaches, we design GAN's hidden layers to match the underlying spatial and temporal characteristics. We advocate the use of graph filters to embed the spatial correlation among multiple wind farms, and a one-dimensional (1D) convolutional layer to represent the temporal feature filters. The proposed graph and feature filter design significantly reduce the GAN model complexity, leading to improvements in training efficiency and computation complexity. Numerical results using real wind power data from Australia demonstrate that the scenarios generated by the proposed GCGAN exhibit more realistic spatial and temporal statistics than other GAN-based outputs.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Generative Adversarial Graph Convolutional Networks for Human Action Synthesis
    Degardin, Bruno
    Neves, Joao
    Lopes, Vasco
    Brito, Joao
    Yaghoubi, Ehsan
    Proenca, Hugo
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2753 - 2762
  • [42] Ad creative generation using reinforced generative adversarial network
    Terzioglu, Sumeyra
    Cogalmis, Kevser Nur
    Bulut, Ahmet
    ELECTRONIC COMMERCE RESEARCH, 2024, 24 (03) : 1491 - 1507
  • [43] Land Clutter Data Generation Using Generative Adversarial Network
    Dang, Xunwang
    Chen, Yong
    Wang, Chao
    Yin, Hongcheng
    Xu, Honglei
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [44] Image Generation Using Different Models Of Generative Adversarial Network
    Al-qerem, Ahmad
    Alsalman, Yasmeen Shaher
    Mansour, Khalid
    2019 INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2019, : 241 - 245
  • [45] GAGCN: Generative adversarial graph convolutional network for non-homogeneous texture extension synthesis
    Xie, Shasha
    Qian, Wenhua
    Nie, Rencan
    Xu, Dan
    Cao, Jinde
    IET IMAGE PROCESSING, 2023, 17 (05) : 1603 - 1614
  • [46] Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network
    Lu, Zhonghao
    Zhong, Hua
    Tang, Lin
    Luo, Jing
    Zhou, Wei
    Liu, Lin
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (11)
  • [47] Speech Emotion Recognition Using Generative Adversarial Network and Deep Convolutional Neural Network
    Kishor Bhangale
    Mohanaprasad Kothandaraman
    Circuits, Systems, and Signal Processing, 2024, 43 : 2341 - 2384
  • [48] Deep Graph-Convolutional Generative Adversarial Network for Semi-Supervised Learning on Graphs
    Jia, Nan
    Tian, Xiaolin
    Gao, Wenxing
    Jiao, Licheng
    REMOTE SENSING, 2023, 15 (12)
  • [49] Underwater sonar image classification using generative adversarial network and convolutional neural network
    Xu, Yichao
    Wang, Xingmei
    Wang, Kunhua
    Shi, Jiahao
    Sun, Wei
    IET IMAGE PROCESSING, 2020, 14 (12) : 2819 - 2825
  • [50] Acute leukemia prediction and classification using convolutional neural network and generative adversarial network
    Lian, Jiunn-Woei
    Wei, Chi-Hung
    Chen, Mu-Yen
    Lin, Ching-Chan
    APPLIED SOFT COMPUTING, 2024, 163