Deep Graph-Convolutional Generative Adversarial Network for Semi-Supervised Learning on Graphs

被引:3
|
作者
Jia, Nan [1 ]
Tian, Xiaolin [1 ]
Gao, Wenxing [1 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Key Lab Intelligent Percept, Image Understanding Minist Educ, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
interpolation operation; graph convolutional networks; node classification; feature-structured enhanced module;
D O I
10.3390/rs15123172
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Graph convolutional networks (GCNs) are neural network frameworks for machine learning on graphs. They can simultaneously perform end-to-end learning on the attribute information and the structure information of graph data. However, most existing GCNs inevitably encounter the limitations of non-robustness and low classification accuracy when labeled nodes are scarce. To address the two issues, the deep graph convolutional generative adversarial network (DGCGAN), a model combining GCN and deep convolutional generative adversarial networks (DCGAN), is proposed in this paper. First, the graph data is mapped to a highly nonlinear space by using the topology and attribute information of the graph for symmetric normalized Laplacian transform. Then, through the feature-structured enhanced module, the node features are expanded into regular structured data, such as images and sequences, which are input to DGCGAN as positive samples, thus expanding the sample capacity. In addition, the feature-enhanced (FE) module is adopted to enhance the typicality and discriminability of node features, and to obtain richer and more representative features, which is helpful for facilitating accurate classification. Finally, additional constraints are added to the network model by introducing DCGAN, thus enhancing the robustness of the model. Through extensive empirical studies on several standard benchmarks, we find that DGCGAN outperforms state-of-the-art baselines on semi-supervised node classification and remote sensing image classification.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Semi-supervised Learning on Graphs with Generative Adversarial Nets
    Ding, Ming
    Tang, Jie
    Zhang, Jie
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 913 - 922
  • [2] Semi-supervised convolutional generative adversarial network for hyperspectral image classification
    Xue, Zhixiang
    IET IMAGE PROCESSING, 2020, 14 (04) : 709 - 719
  • [3] Anisotropic Graph Convolutional Network for Semi-Supervised Learning
    Mesgaran, Mahsa
    Ben Hamzae, A.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3931 - 3942
  • [4] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [5] Semi-Supervised Encrypted Traffic Classification With Deep Convolutional Generative Adversarial Networks
    Iliyasu, Auwal Sani
    Deng, Huifang
    IEEE ACCESS, 2020, 8 : 118 - 126
  • [6] Semi-supervised multitask deep convolutional generative adversarial network for unbalanced fault diagnosis of rolling bearing
    Che, Changchang
    Wang, Huawei
    Lin, Ruiguan
    Ni, Xiaomei
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (07)
  • [7] Semi-supervised multitask deep convolutional generative adversarial network for unbalanced fault diagnosis of rolling bearing
    Changchang Che
    Huawei Wang
    Ruiguan Lin
    Xiaomei Ni
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [8] Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning
    Wan, Sheng
    Pan, Shirui
    Yang, Jian
    Gong, Chen
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10049 - 10057
  • [9] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    Computer Vision and Image Understanding, 2024, 249
  • [10] Multimodal deep generative adversarial models for scalable doubly semi-supervised learning
    Du, Changde
    Du, Changying
    He, Huiguang
    INFORMATION FUSION, 2021, 68 : 118 - 130