A risk assessment framework for multidrug-resistant Staphylococcus aureus using machine learning and mass spectrometry technology

被引:1
|
作者
Wang, Zhuo [1 ]
Pang, Yuxuan [1 ,2 ]
Chung, Chia-Ru [3 ]
Wang, Hsin-Yao [4 ]
Cui, Haiyan [5 ,6 ]
Chiang, Ying-Chih [7 ]
Horng, Jorng-Tzong [3 ]
Lu, Jang-Jih [4 ]
Lee, Tzong-Yi [8 ]
机构
[1] Chinese Univ Hong Kong, Warshel Inst Computat Biol, Shenzhen, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen, Peoples R China
[3] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
[4] Chang Gung Mem Hosp Linkou, Dept Lab Med, Taoyuan 333, Taiwan
[5] Longgang Dist Peoples Hosp Shenzhen, Dept Clin Lab, Shenzhen, Peoples R China
[6] Chinese Univ Hong Kong, Affiliated Hosp 2, Shenzhen, Peoples R China
[7] Chinese Univ Hong Kong, Kobilka Inst Innovat Drug Discovery, Sch Med, Shenzhen, Peoples R China
[8] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, 1001 Daxue Rd, Hsinchu 300, Taiwan
基金
中国国家自然科学基金;
关键词
matrix-associated laser desorption and ionization/time-of-flight mass spectrometry; MALDI-TOF MS; methicillin-resistant Staphylococcus aureus; machine learning; risk assessment of multidrug-resistant bacteria; BROTH MICRODILUTION; MRSA; MEDIA; ASSAY;
D O I
10.1093/bib/bbad330
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved >20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus
    Liu, Shupei
    Mai, Bingjie
    Jia, Mengqi
    Lin, Dewu
    Zhang, Jingdan
    Liu, Quanhong
    Wang, Pan
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2020, 30
  • [22] Bartholin gland abscess and community acquired multidrug-resistant Staphylococcus aureus
    Rivera-Alsina, Manuel E.
    Crisan, Luminita S.
    Bryant, Morris K.
    Hunter, Leigh K.
    OBSTETRICS AND GYNECOLOGY, 2007, 109 (04): : 57S - 58S
  • [23] Emerging options for treatment of invasive, multidrug-resistant Staphylococcus aureus infections
    Drew, Richard H.
    PHARMACOTHERAPY, 2007, 27 (02): : 227 - 249
  • [24] Burn wound infections: a serious threat of multidrug-resistant Staphylococcus aureus
    Junaid, Kashaf
    Ul Mustafa, Ata
    Arshad, Sana
    Al Farraj, Dunia A.
    Younas, Sona
    Ejaz, Hasan
    PAKISTAN JOURNAL OF MEDICAL & HEALTH SCIENCES, 2019, 13 (03): : 804 - 807
  • [25] EFFICACY OF TOPICAL GLYCOPEPTIDES FOR MULTIDRUG-RESISTANT STAPHYLOCOCCUS-AUREUS KERATITIS
    CALLEGAN, MC
    ENGEL, LS
    HILL, JM
    GREEN, LP
    OCALLAGHAN, RJ
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1995, 36 (04) : S1021 - S1021
  • [26] Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus
    Kwon, An Sung
    Park, Gwang Chul
    Ryu, So Yeon
    Lim, Dong Hoon
    Lim, Dong Yoon
    Choi, Chul Hee
    Park, Yoonkyung
    Lim, Yong
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2008, 32 (01) : 68 - 72
  • [27] Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide
    Sionov, Ronit Vogt
    Banerjee, Shreya
    Bogomolov, Sergei
    Smoum, Reem
    Mechoulam, Raphael
    Steinberg, Doron
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (14)
  • [28] In silico Identification of Drug Targets in Methicillin/Multidrug-Resistant Staphylococcus aureus
    Haag, Nichole Louise
    Velk, Kimberly Kay
    Wu, Chun
    BIOTECHNO 2011: THE THIRD INTERNATIONAL CONFERENCE ON BIOINFORMATICS, BIOCOMPUTATIONAL SYSTEMS AND BIOTECHNOLOGIES, 2011, : 91 - 99
  • [29] Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus
    Joshi, Amruta A.
    Patil, Ravindra H.
    INFECTIOUS MEDICINE, 2023, 2 (04): : 294 - 307
  • [30] Prevalence of Multidrug-Resistant Methicillin- Resistant Staphylococcus aureus in Northeastern Saudi Hospitals
    Aljeldah, Mohammed
    Al Shammari, Basim
    Farrag, Eman S.
    Taha, Ehab M.
    Mahmoud, Sabry Y.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2022, 16 (02): : 1192 - 1199