A risk assessment framework for multidrug-resistant Staphylococcus aureus using machine learning and mass spectrometry technology

被引:1
|
作者
Wang, Zhuo [1 ]
Pang, Yuxuan [1 ,2 ]
Chung, Chia-Ru [3 ]
Wang, Hsin-Yao [4 ]
Cui, Haiyan [5 ,6 ]
Chiang, Ying-Chih [7 ]
Horng, Jorng-Tzong [3 ]
Lu, Jang-Jih [4 ]
Lee, Tzong-Yi [8 ]
机构
[1] Chinese Univ Hong Kong, Warshel Inst Computat Biol, Shenzhen, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen, Peoples R China
[3] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
[4] Chang Gung Mem Hosp Linkou, Dept Lab Med, Taoyuan 333, Taiwan
[5] Longgang Dist Peoples Hosp Shenzhen, Dept Clin Lab, Shenzhen, Peoples R China
[6] Chinese Univ Hong Kong, Affiliated Hosp 2, Shenzhen, Peoples R China
[7] Chinese Univ Hong Kong, Kobilka Inst Innovat Drug Discovery, Sch Med, Shenzhen, Peoples R China
[8] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, 1001 Daxue Rd, Hsinchu 300, Taiwan
基金
中国国家自然科学基金;
关键词
matrix-associated laser desorption and ionization/time-of-flight mass spectrometry; MALDI-TOF MS; methicillin-resistant Staphylococcus aureus; machine learning; risk assessment of multidrug-resistant bacteria; BROTH MICRODILUTION; MRSA; MEDIA; ASSAY;
D O I
10.1093/bib/bbad330
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved >20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] Household Risk Factors for Colonization with Multidrug-Resistant Staphylococcus aureus Isolates
    Davis, Meghan F.
    Peterson, Amy E.
    Julian, Kathleen G.
    Greene, Wallace H.
    Price, Lance B.
    Nelson, Kenrad
    Whitener, Cynthia J.
    Silbergeld, Ellen K.
    PLOS ONE, 2013, 8 (01):
  • [2] Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus
    Hisham A. Abbas
    Hamada Atallah
    Mona A. El-Sayed
    Amira M. El-Ganiny
    Archives of Microbiology, 2020, 202 : 2751 - 2760
  • [3] Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry
    Waters, Andrew E.
    Contente-Cuomo, Tania
    Buchhagen, Jordan
    Liu, Cindy M.
    Watson, Lindsey
    Pearce, Kimberly
    Foster, Jeffrey T.
    Bowers, Jolene
    Driebe, Elizabeth M.
    Engelthaler, David M.
    Keim, Paul S.
    Price, Lance B.
    CLINICAL INFECTIOUS DISEASES, 2011, 52 (10) : 1227 - 1230
  • [4] Mass spectrometry and machine learning for the accurate diagnosis of benzylpenicillin and multidrug resistance of Staphylococcus aureus in bovine mastitis
    Esener, Necati
    Guerra, Alexandre Maciel
    Giebel, Katharina
    Lea, Daniel
    Green, Martin J.
    Bradley, Andrew J.
    Dottorini, Tania
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (06)
  • [5] Efficacy of lytic Staphylococcus aureus bacteriophage against multidrug-resistant Staphylococcus aureus in mice
    Oduor, Joseph Michael Ochieng'
    Onkoba, Nyamongo
    Maloba, Fredrick
    Arodi, Washingtone Ouma
    Nyachieo, Atunga
    JOURNAL OF INFECTION IN DEVELOPING COUNTRIES, 2016, 10 (11): : 1208 - 1213
  • [6] Rapid Detection of Non-Multidrug-Resistant and Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Using Cycling Probe Technology for the mecA gene
    J. Merlino
    B. Rose
    C. Harbour
    European Journal of Clinical Microbiology and Infectious Diseases , 2003, 22 : 322 - 323
  • [7] Rapid detection of non-multidrug-resistant and multidrug-resistant methicillin-resistant Staphylococcus aureus using cycling probe technology for the mecA gene
    Merlino, J
    Rose, B
    Harbour, C
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2003, 22 (05) : 322 - 323
  • [8] Oxacillin-resistant and multidrug-resistant staphylococcus aureus in Lima, Peru
    Seas, C.
    Hernandez, K.
    Ramos, R.
    Bazan, E.
    Rodriguez, I.
    Torres, A.
    Zamudio, C.
    Gotuzzo, E.
    INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2006, 27 (02): : 198 - 200
  • [9] Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms
    Kazmierczak, Natalia
    Grygorcewicz, Bartlomiej
    Roszak, Marta
    Bochentyn, Beata
    Piechowicz, Lidia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [10] Multidrug-Resistant Staphylococcus aureus, India, 2013-2015
    Kumar, Mohit
    EMERGING INFECTIOUS DISEASES, 2016, 22 (09) : 1666 - 1667