Deep Learning-Assisted Automated Multidimensional Single Particle Tracking in Living Cells

被引:0
|
作者
Song, Dongliang [1 ]
Zhang, Xin [1 ]
Li, Baoyun [1 ]
Sun, Yuanfang [1 ]
Mei, Huihui [1 ]
Cheng, Xiaojuan [2 ]
Li, Jieming [3 ]
Cheng, Xiaodong [2 ]
Fang, Ning [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Innovat Lab Sci & Technol Energy Mat Fujian Prov, Xiamen 361005, Peoples R China
[2] Wenzhou Med Univ, Sch Pharmaceut Sci, Wenzhou 325035, Peoples R China
[3] Bristol Myers Squibb Co, New Brunswick, NJ 08901 USA
基金
中国国家自然科学基金;
关键词
single particle tracking; live cell imaging; deep learning; rotational tracking; cargo transport;
D O I
10.1021/acs.nanolett.3c04870
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0 degrees-360 degrees) and polar angles (0 degrees-90 degrees) with errors of less than 2 degrees on the experimental and simulated data under S/N of similar to 4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.
引用
收藏
页码:3082 / 3088
页数:7
相关论文
共 50 条
  • [1] Deep Learning-Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard-to-Transfect Cells
    Mukherjee, Prithvijit
    Patino, Cesar A.
    Pathak, Nibir
    Lemaitre, Vincent
    Espinosa, Horacio D.
    [J]. SMALL, 2022, 18 (20)
  • [2] Deep learning-assisted fully automatic fiber tracking for tremor treatment
    Haensch, Annika
    Jenne, Juergen W.
    Upadhyay, Neeraj
    Schmeel, Carsten
    Purrer, Veronika
    Wuellner, Ullrich
    Klein, Jan
    [J]. MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [3] Learning-Assisted Automated Reasoning with Flyspeck
    Cezary Kaliszyk
    Josef Urban
    [J]. Journal of Automated Reasoning, 2014, 53 : 173 - 213
  • [4] Learning-assisted automated reasoning with Flyspeck
    [J]. Urban, J. (Josef.Urban@gmail.com), 1600, Kluwer Academic Publishers (53):
  • [5] Learning-Assisted Automated Reasoning with Flyspeck
    Kaliszyk, Cezary
    Urban, Josef
    [J]. JOURNAL OF AUTOMATED REASONING, 2014, 53 (02) : 173 - 213
  • [6] Pitfalls In Single Particle Tracking In Living Cells
    Metzler, Ralf
    He, Yong
    Burov, Stas
    Barkai, Eli
    [J]. BIOPHYSICAL JOURNAL, 2009, 96 (03) : 385A - 385A
  • [7] Deep learning-assisted near-Earth asteroid tracking in astronomical images
    Du, Zhenhong
    Jiang, Hai
    Yang, Xu
    Cheng, Hao-Wen
    Liu, Jing
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (10) : 5349 - 5362
  • [8] Erratum to : Learning-Assisted Automated Reasoning with Flyspeck
    Cezary Kaliszyk
    Josef Urban
    [J]. Journal of Automated Reasoning, 2015, 54 : 99 - 99
  • [9] Uses of single-particle tracking in living cells
    Zhou, Xuan
    Wang, Lei
    [J]. DRUG DISCOVERIES AND THERAPEUTICS, 2010, 4 (02): : 62 - 69
  • [10] Automated Detection of Corneal Edema With Deep Learning-Assisted Second Harmonic Generation Microscopy
    Anton, Stefan R.
    Martinez-Ojeda, Rosa M.
    Hristu, Radu
    Stanciu, George A.
    Toma, Antonela
    Banica, Cosmin K.
    Fernandez, Enrique J.
    Huttunen, Mikko J.
    Bueno, Juan M.
    Stanciu, Stefan G.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (06)