Data-driven analysis and prediction of dynamic postprandial metabolic response to multiple dietary challenges using dynamic mode decomposition

被引:0
|
作者
Skantze, Viktor [1 ,2 ]
Jirstrand, Mats [1 ]
Brunius, Carl [2 ]
Sandberg, Ann-Sofie [2 ]
Landberg, Rikard [2 ]
Wallman, Mikael [1 ]
机构
[1] Fraunhofer Chalmers Res Ctr Ind Math, Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Life Sci, Div Food & Nutr Sci, Gothenburg, Sweden
来源
FRONTIERS IN NUTRITION | 2024年 / 10卷
基金
瑞典研究理事会;
关键词
personalized nutrition; differential responders; metabotypes; dynamic mode decomposition; precision nutrition; PERSONALIZED NUTRITION;
D O I
10.3389/fnut.2023.1304540
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
MotivationIn the field of precision nutrition, predicting metabolic response to diet and identifying groups of differential responders are two highly desirable steps toward developing tailored dietary strategies. However, data analysis tools are currently lacking, especially for complex settings such as crossover studies with repeated measures.Current methods of analysis often rely on matrix or tensor decompositions, which are well suited for identifying differential responders but lacking in predictive power, or on dynamical systems modeling, which may be used for prediction but typically requires detailed mechanistic knowledge of the system under study. To remedy these shortcomings, we explored dynamic mode decomposition (DMD), which is a recent, data-driven method for deriving low-rank linear dynamical systems from high dimensional data.Combining the two recent developments "parametric DMD" (pDMD) and "DMD with control" (DMDc) enabled us to (i) integrate multiple dietary challenges, (ii) predict the dynamic response in all measured metabolites to new diets from only the metabolite baseline and dietary input, and (iii) identify inter-individual metabolic differences, i.e., metabotypes. To our knowledge, this is the first time DMD has been applied to analyze time-resolved metabolomics data.MotivationIn the field of precision nutrition, predicting metabolic response to diet and identifying groups of differential responders are two highly desirable steps toward developing tailored dietary strategies. However, data analysis tools are currently lacking, especially for complex settings such as crossover studies with repeated measures.Current methods of analysis often rely on matrix or tensor decompositions, which are well suited for identifying differential responders but lacking in predictive power, or on dynamical systems modeling, which may be used for prediction but typically requires detailed mechanistic knowledge of the system under study. To remedy these shortcomings, we explored dynamic mode decomposition (DMD), which is a recent, data-driven method for deriving low-rank linear dynamical systems from high dimensional data.Combining the two recent developments "parametric DMD" (pDMD) and "DMD with control" (DMDc) enabled us to (i) integrate multiple dietary challenges, (ii) predict the dynamic response in all measured metabolites to new diets from only the metabolite baseline and dietary input, and (iii) identify inter-individual metabolic differences, i.e., metabotypes. To our knowledge, this is the first time DMD has been applied to analyze time-resolved metabolomics data.MotivationIn the field of precision nutrition, predicting metabolic response to diet and identifying groups of differential responders are two highly desirable steps toward developing tailored dietary strategies. However, data analysis tools are currently lacking, especially for complex settings such as crossover studies with repeated measures.Current methods of analysis often rely on matrix or tensor decompositions, which are well suited for identifying differential responders but lacking in predictive power, or on dynamical systems modeling, which may be used for prediction but typically requires detailed mechanistic knowledge of the system under study. To remedy these shortcomings, we explored dynamic mode decomposition (DMD), which is a recent, data-driven method for deriving low-rank linear dynamical systems from high dimensional data. Combining the two recent developments "parametric DMD" (pDMD) and "DMD with control" (DMDc) enabled us to (i) integrate multiple dietary challenges, (ii) predict the dynamic response in all measured metabolites to new diets from only the metabolite baseline and dietary input, and (iii) identify inter-individual metabolic differences, i.e., metabotypes. To our knowledge, this is the first time DMD has been applied to analyze time-resolved metabolomics data.ResultsWe demonstrate the potential of pDMDc in a crossover study setting. We could predict the metabolite response to unseen dietary exposures on both measured (R2 = 0.40) and simulated data of increasing size (Rmax2= 0.65), as well as recover clusters of dynamic metabolite responses. We conclude that this method has potential for applications in personalized nutrition and could be useful in guiding metabolite response to target levels.Availability and implementationThe measured data analyzed in this study can be provided upon reasonable request. The simulated data along with a MATLAB implementation of pDMDc is available at https://github.com/FraunhoferChalmersCentre/pDMDc.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Data-Driven Prediction and Visualisation of Dynamic Bushfire Risks
    Rusu, Laura
    Hoang Tam Vo
    Wang, Ziyuan
    Salehi, Mahsa
    Phan, Anna
    DATABASES THEORY AND APPLICATIONS, (ADC 2016), 2016, 9877 : 457 - 461
  • [32] Prediction of spatiotemporal dynamic systems by data-driven reconstruction
    Ren H.-H.
    Fan M.-H.
    Bai Y.-L.
    Ma X.-Y.
    Zhao J.-H.
    Chaos, Solitons and Fractals, 2024, 185
  • [33] Data-driven Nonlinear MPC using Dynamic Response Surface Methodology
    Pelagagge, Federico
    Georgakis, Christos
    Pannocchia, Gabriele
    IFAC PAPERSONLINE, 2021, 54 (06): : 272 - 277
  • [34] ANALYSIS OF DATA-DRIVEN INTERNAL MULTIPLE PREDICTION
    Ramifrez, Adriana Citlali
    JOURNAL OF SEISMIC EXPLORATION, 2013, 22 (02): : 105 - 128
  • [35] An Adaptive Data-Driven Reduced Order Model Based on Higher Order Dynamic Mode Decomposition
    Víctor Beltrán
    Soledad Le Clainche
    José M. Vega
    Journal of Scientific Computing, 2022, 92
  • [36] An Adaptive Data-Driven Reduced Order Model Based on Higher Order Dynamic Mode Decomposition
    Beltran, Victor
    Le Clainche, Soledad
    Vega, Jose M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [37] Data-Driven Steering of Concentric Tube Robots in Unknown Environments via Dynamic Mode Decomposition
    Thamo, Balint
    Hanley, David
    Dhaliwal, Kevin
    Khadem, Mohsen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 856 - 863
  • [38] Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
    Le Clainche, Soledad
    Vega, Jose M.
    COMPLEXITY, 2018,
  • [39] Data-driven acceleration of thermal radiation transfer calculations with the dynamic mode decomposition and a sequential singular value decomposition
    McClarren, Ryan G.
    Haut, Terry S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 448
  • [40] Prediction and Classification of Temperature Data in Smart Building using Dynamic Mode Decomposition
    Sunny, K.
    Sheikh, A.
    Wagh, S.
    Singh, N. M.
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 1074 - 1079