Fractional non-homogeneous Poisson and Polya-Aeppli processes of order k and beyond

被引:3
|
作者
Kadankova, Tetyana [1 ]
Leonenko, Nikolai [2 ]
Scalas, Enrico [3 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Cardiff Univ, Sch Math, Cardiff, Wales
[3] Univ Sussex, Dept Math, Brighton, E Sussex, England
关键词
non-homogeneous fractional Poisson process of order k non-homogeneous fractional Polya-Aeppli process of order k long range dependence; Caputo fractional derivative; alpha-stable Levy subordinators; fractional integro-differential difference equations;
D O I
10.1080/03610926.2021.1958228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce two classes of point processes: a fractional non-homogeneous Poisson process of order k and a fractional non-homogeneous Polya-Aeppli process of order k. We characterize these processes by deriving their non-local governing equations. We further study the covariance structure of the processes and investigate the long-range dependence property.
引用
下载
收藏
页码:2682 / 2701
页数:20
相关论文
共 50 条
  • [31] Block modelling in dynamic networks with non-homogeneous Poisson processes and exact ICL
    Corneli M.
    Latouche P.
    Rossi F.
    Social Network Analysis and Mining, 2016, 6 (1)
  • [32] SOLUTION TO FRACTIONAL ORDER HYBRID NON-HOMOGENEOUS ORDINARY DIFFERENTIAL EQUATION
    Dayi Zheng
    Annals of Applied Mathematics, 2014, 30 (04) : 494 - 501
  • [33] Testing of two sample proportional intensity assumption for non-homogeneous Poisson processes
    Deshpande, JV
    Mukhopadhyay, M
    Naik-Nimbalkar, UV
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 81 (02) : 237 - 251
  • [34] LIMIT THEOREMS FOR SUPERCRITICAL MARKOV BRANCHING PROCESSES WITH NON-HOMOGENEOUS POISSON IMMIGRATION
    Hyrien, Ollivier
    Mitov, Kosto V.
    Yanev, Nikolay M.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (04): : 485 - 492
  • [35] Strong convergence of a class of non-homogeneous Markov arrival processes to a Poisson process
    Ledoux, James
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (04) : 445 - 455
  • [36] Software reliability considering the superposition of non-homogeneous Poisson processes in the presence of a covariate
    Cid, JER
    Achcar, JA
    STATISTICS, 2002, 36 (03) : 259 - 269
  • [37] Statistical inference of computer virus propagation using non-homogeneous Poisson processes
    Okamura, Hiroyuki
    Tateishi, Kazuya
    Dohi, Tadashi
    ISSRE 2007: 18TH IEEE INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, PROCEEDINGS, 2007, : 149 - 158
  • [38] LIMITING DISTRIBUTIONS FOR MULTITYPE MARKOV BRANCHING PROCESSES WITH NON-HOMOGENEOUS POISSON IMMIGRATION
    Yanev, Nikolay M.
    Hyrien, Ollivier
    Mitov, Kosto V.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (12): : 1627 - 1634
  • [39] STASTISTICS OF PARTICULAR NON-HOMOGENEOUS POISSON PROCESS
    WILLIS, DM
    BIOMETRIKA, 1964, 51 (3-4) : 399 - &
  • [40] Prediction in a non-homogeneous Poisson cluster model
    Matsui, Muneya
    INSURANCE MATHEMATICS & ECONOMICS, 2014, 55 : 10 - 17