Fractional non-homogeneous Poisson and Polya-Aeppli processes of order k and beyond

被引:3
|
作者
Kadankova, Tetyana [1 ]
Leonenko, Nikolai [2 ]
Scalas, Enrico [3 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Cardiff Univ, Sch Math, Cardiff, Wales
[3] Univ Sussex, Dept Math, Brighton, E Sussex, England
关键词
non-homogeneous fractional Poisson process of order k non-homogeneous fractional Polya-Aeppli process of order k long range dependence; Caputo fractional derivative; alpha-stable Levy subordinators; fractional integro-differential difference equations;
D O I
10.1080/03610926.2021.1958228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce two classes of point processes: a fractional non-homogeneous Poisson process of order k and a fractional non-homogeneous Polya-Aeppli process of order k. We characterize these processes by deriving their non-local governing equations. We further study the covariance structure of the processes and investigate the long-range dependence property.
引用
收藏
页码:2682 / 2701
页数:20
相关论文
共 50 条
  • [21] CRITICAL MARKOV BRANCHING PROCESSES WITH NON-HOMOGENEOUS POISSON IMMIGRATION
    Mitov, Kosto, V
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (07): : 908 - 914
  • [22] Supercritical Sevastyanov Branching Processes with Non-homogeneous Poisson Immigration
    Hyrien, Ollivier
    Mitov, Kosto V.
    Yanev, Nikolay M.
    BRANCHING PROCESSES AND THEIR APPLICATIONS, 2016, 219 : 151 - 166
  • [23] Inferences on the isotonic intensities of non-homogeneous Poisson processes.
    Hu, XM
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03): : 471 - 471
  • [24] Modelling non-homogeneous Poisson processes with almost periodic intensity functions
    Shao, Nan
    Lii, Keh-Shin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 99 - 122
  • [25] Non-homogeneous Poisson and renewal processes as spatial models for cancer mutation
    Miao, Hengyuan
    Kuruoglu, Ercan Engin
    Xu, Tao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 106
  • [26] Intensity estimation of non-homogeneous Poisson processes from shifted trajectories
    Bigot, Jeremie
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 881 - 931
  • [27] Modeling environmental noise exceedances using non-homogeneous Poisson processes
    Guarnaccia, Claudio
    Quartieri, Joseph
    Barrios, Juan M.
    Rodrigues, Eliane R.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (04): : 1631 - 1639
  • [28] RENEWAL AGING IN NON-HOMOGENEOUS POISSON PROCESSES WITH PERIODIC RATE MODULATION
    Paradisi, Paolo
    Grigolini, Paolo
    Bianco, Simone
    Akin, Osman C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09): : 2681 - 2691
  • [29] Bayesian modeling and decision theory for non-homogeneous Poisson point processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    SPATIAL STATISTICS, 2020, 36
  • [30] LIMIT THEOREMS FOR SUBCRITICAL MARKOV BRANCHING PROCESSES WITH NON-HOMOGENEOUS POISSON IMMIGRATION
    Hyrien, Ollivier
    Mitov, Kosto V.
    Yanev, Nikolay M.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (03): : 313 - 320