Influences of ZrO2 content on microstructural and ionic conductivity of Li1.4Al0.4Ti1.6(PO4)3 solid-state electrolytes

被引:0
|
作者
Li, Shuixian [1 ]
Shang, Fei [1 ]
Wang, Yi [1 ]
Chen, Guohua [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Ceramics; Solid-state electrolytes; Ionic conductivity; Li1.4Al0.4Ti1.6(PO4)(3); ELECTRICAL-PROPERTIES; LITHIUM; MECHANISMS; CHROMIUM; ALUMINUM; SYSTEM;
D O I
10.1016/j.ssi.2024.116460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NASICON-type electrolyte Li1.4Al0.4Ti1.6(PO4)(3) attracts great attention with its high grain conductivity and stable microstructure. In this work, the Li1.4Al0.4Ti(1.6-x)Zrx(PO4)(3) solid-state electrolytes were synthetized. And the influences of ZrO2 addition on microstructural evaluation and ionic conductivity of Li1.4Al0.4Ti(1.6-x)Zrx(PO4)(3) were studied using powder X-ray diffraction, scanning electron microscopy and impedance spectroscopy. All synthetic samples adopted single phase LiTi2(PO4)(3) with NASICON type structure. The highest ionic conductivity of 0.54 mS/cm and the minimum activation energy of 0.232 eV were achieved for x = 0.04 sample sintered at 850 degrees C. These results indicate that ZrO2 added Li1.4Al0.4Ti1.6(PO4)(3) ceramic has a potential application in solid electrolytes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性
    陈棋
    尚学府
    张鹏
    徐鹏
    王淼
    今西誠之
    物理学报, 2017, 66 (18) : 266 - 273
  • [42] Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 as for the Lithium-Rich Manganese-Based Cathode Material Coating Li1.2Ni0.13Co0.13Mn0.54O2
    Fu Z.
    Li W.
    Wang X.
    Kong D.
    Wu H.
    Haschuluu O.
    Tegus O.
    Bator S.
    Defect and Diffusion Forum, 2023, 423 : 43 - 55
  • [43] Li1.4Al0.4Ge0.1Ti1.5(PO4)3: A stable solid electrolyte for Li-CO2 batteries
    Yoon, Baeksang
    Baek, Jiyeon
    Na, Dan
    Yu, Dohyeon
    Kampara, Roopa Kishore
    Seo, Hyung-Kee
    Lee, Dae Young
    Seo, Inseok
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 322
  • [44] Li1.4Al0.4Ti1.6(PO4)3 coated Li1.2Ni0.13Co0.13Mn0.54O2 for enhancing electrochemical performance of lithium-ion batteries
    Lai Xiang-wan
    Hu Guo-rong
    Peng Zhong-dong
    Cao Yan-bing
    Du Ke
    Liu Ye-xiang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (05) : 1463 - 1478
  • [45] Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1+xAlxTi2-x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content
    He, Shengnan
    Xu, Youlong
    SOLID STATE IONICS, 2019, 343
  • [46] Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant
    Zhao, Erqing
    Ma, Furui
    Jin, Yongcheng
    Kanamura, Kiyoshi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 680 : 646 - 653
  • [47] Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid
    Kwatek, K.
    Nowinski, J. L.
    SOLID STATE IONICS, 2017, 302 : 54 - 60
  • [48] Synthesis of NASICON type Li1.4Al0.4Ge0.2Ti1.4(PO4)3 solid electrolyte by rheological phase method
    Bai, Fan
    Kakimoto, Kouichi
    Shang, Xuefu
    Mori, Daisuke
    Taminato, Sou
    Matsumoto, Mitsuhiro
    Takeda, Yasuo
    Yamamoto, Osamu
    Minami, Hironari
    Izumi, Hiroaki
    Imanishi, Nobuyuki
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2020, 8 (02) : 476 - 483
  • [49] Facile Synthesis of Nanosized Lithium-Ion-Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 and Its Mechanical Nanocomposites with LiMn2O4 for Enhanced Cyclic Performance in Lithium Ion Batteries
    Liu, Xingang
    Tan, Jiang
    Fu, Ju
    Yuan, Ruoxin
    Wen, Hao
    Zhang, Chuhong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (13) : 11696 - 11703
  • [50] Solid-state ion doping and crystal structure engineering for enhanced ionic conductivity in LiTi2(PO4)3 electrolytes
    Yinyi Luo
    Xinyu Liu
    Chengjiang Wen
    Tianxiang Ning
    Xingxing Jiang
    Anxian Lu
    Applied Physics A, 2023, 129