Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant

被引:80
|
作者
Zhao, Erqing [1 ]
Ma, Furui [1 ]
Jin, Yongcheng [1 ]
Kanamura, Kiyoshi [2 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biobased Mat, Qingdao 266101, Peoples R China
[2] Tokyo Metropolitan Univ, Grad Sch Urban Environm Sci, Dept Appl Chem, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
NASICON-type; Solid electrolyte; Li1.3Al0.3Ti1.7(PO4)(3); Pechini process; Electrical conductivity; ELECTROCHEMICAL PROPERTIES; GLASS-CERAMICS; GEL; CONDUCTORS; POWDERS;
D O I
10.1016/j.jallcom.2016.04.173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A NASICON-type structure lithium ion conducting solid electrolyte with the composition of Li1.3Al0.3-Ti-1.7(PO4)(3) (LATP) has been successfully synthesized via a modified pechini process with ethylene glycol or glucose as dispersant. The influences of dispersant, calcination temperature for the precursor powders, sintering temperature and holding period for the electrolyte pellets on electrical properties of the LATP electrolytes were investigated. The produced LATP sample using glucose as dispersant has a higher electrical conductivity than those samples with ethylene glycol as dispersant or no dispersant. The highest total conductivity of 6.0 x 10(-4) S/cm at 303 K and the lowest activation energy of 0.31 eV were obtained for the LATP electrolyte sample sintered in 900 degrees C for 3 h and prepared using the precursor powders calcined at 850 degrees C for 5 h in air. Additionally, this electrolyte sample has a negligible electronic conductivity. These results imply that the LATP electrolytes obtained in this work can be considered as candidates for solid state electrolytes applied in Lithium ion batteries. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:646 / 653
页数:8
相关论文
共 50 条
  • [1] Ionic conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)(3)
    Gromov, OG
    Kunshina, GB
    Kuzmin, AP
    Kalinnikov, VT
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1996, 69 (03) : 385 - 388
  • [2] Influence of Liquid Solutions on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes
    Huang, Yi
    Jiang, Yue
    Zhou, Yuxi
    Hu, Zhiwei
    Zhu, Xiaohong
    CHEMELECTROCHEM, 2019, 6 (24): : 6016 - 6026
  • [3] High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Erqing
    Guo, Yudi
    Xu, Guangri
    Yuan, Long
    Liu, Jingcheng
    Li, Xiaobo
    Yang, Li
    Ma, Jingjing
    Li, Yuanchao
    Fan, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 384 - 391
  • [4] Nano-grass like AlOOH as an Al source for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with high ionic conductivity
    He, Yingchun
    Li, Bo
    Duan, Hao
    Wang, Shen
    Yin, Shan
    Hao, Yan
    Pan, Yue
    Wu, Kaipeng
    CERAMICS INTERNATIONAL, 2020, 46 (09) : 14143 - 14149
  • [5] Standardization of ionic conductivity measurements in Li1.3Al0.3Ti1.7(PO4)3-polymer composite electrolytes
    Jacob, Megha Sara
    Doddi, Nikhil
    Shanmugam, Vasu
    Prasanna, Gopikrishnan Ebenezer
    Peddi, Mahender
    Vedarajan, Raman
    Moodakare, Sahana B.
    Gopalan, Raghavan
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 286
  • [6] Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Mertens, Andreas
    Yu, Shicheng
    Schoen, Nino
    Gunduz, Deniz C.
    Tempel, Hermann
    Schierholz, Roland
    Hausen, Florian
    Kungl, Hans
    Granwehr, Josef
    Eichel, Ruediger-A
    SOLID STATE IONICS, 2017, 309 : 180 - 186
  • [7] Preparation and electrochemical properties of a ceramic solid electrolyte with high ionic conductivity, Li1.3Al0.3Ti1.7(PO4)3
    Yin, Jianhong
    Zhang, Haibang
    Zeng, Zhaocheng
    Xu, Guoqian
    Guo, Pingchun
    Jiang, Hedong
    Li, Jiake
    Wang, Yan-xiang
    Yu, Shijin
    Zhu, Hua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
  • [8] Optimizing Li1.3Al0.3Ti1.7(PO4)3 Particle Sizes toward High Ionic Conductivity
    Li, Xiaoyi
    Zhou, Yongjian
    Tang, Jiawen
    Zhao, Siliang
    Zhang, Jingyong
    Huang, Xiao
    Tian, Bingbing
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 36289 - 36300
  • [9] Solvothermal synthesis high lithium ionic conductivity of Gd-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Fan, Mingxia
    Deng, Xiangyu
    Zheng, Anqiao
    Yuan, Songdong
    FUNCTIONAL MATERIALS LETTERS, 2021, 14 (03)
  • [10] Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity
    Xu, Youlong (ylxu@mail.xjtu.edu.cn), 1600, Elsevier B.V., Netherlands (345):