Universal Sampling Lower Bounds for Quantum Error Mitigation

被引:11
|
作者
Takagi, Ryuji [1 ,2 ]
Tajima, Hiroyasu [3 ,4 ]
Gu, Mile [2 ,5 ,6 ]
机构
[1] Univ Tokyo, Dept Basic Sci, Tokyo 1538902, Japan
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[3] Univ Electrocommun, Dept Commun Engn & Informat, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[4] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[6] CNRS UNS NUS NTU Int Joint Res Unit UMI 3654, MajuLab, Singapore, Singapore
关键词
All Open Access; Hybrid Gold; Green;
D O I
10.1103/PhysRevLett.131.210602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerous quantum error-mitigation protocols have been proposed, motivated by the critical need to suppress noise effects on intermediate-scale quantum devices. Yet, their general potential and limitations remain elusive. In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial to characterize the fundamental sampling cost-how many times an arbitrary mitigation protocol must run a noisy quantum device. Here, we establish universal lower bounds on the sampling cost for quantum error mitigation to achieve the desired accuracy with high probability. Our bounds apply to general mitigation protocols, including the ones involving nonlinear postprocessing and those yet to be discovered. The results imply that the sampling cost required for a wide class of protocols to mitigate errors must grow exponentially with the circuit depth for various noise models, revealing the fundamental obstacles in the scalability of useful noisy near-term quantum devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quantum Error Mitigation for Quantum State Tomography
    Ramadhani, Syahri
    Rehman, Junaid Ur
    Shin, Hyundong
    IEEE ACCESS, 2021, 9 : 107955 - 107964
  • [42] Bounds on the aliasing error in multidimensional Shannon sampling
    Bresler, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 2238 - 2241
  • [43] General lower and upper bounds under minimum-error quantum state discrimination
    Loubenets, Elena R.
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [44] Improved Lower Bounds for the Universal and a priori TSP
    Gorodezky, Igor
    Kleinberg, Robert D.
    Shmoys, David B.
    Spencer, Gwen
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 178 - +
  • [45] LOWER BOUNDS ON THE LENGTH OF UNIVERSAL TRAVERSAL SEQUENCES
    BORODIN, A
    RUZZO, WL
    TOMPA, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1992, 45 (02) : 180 - 203
  • [46] Quantum error detection II: Bounds
    Ashikhmin, AE
    Barg, AM
    Knill, E
    Litsyn, SN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 789 - 800
  • [47] Classical lower bounds from quantum upper bounds
    Ben-David, Shalev
    Bouland, Adam
    Garg, Ankit
    Kothari, Robin
    2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 339 - 349
  • [48] Error statistics and scalability of quantum error mitigation formulas
    Dayue Qin
    Yanzhu Chen
    Ying Li
    npj Quantum Information, 9
  • [49] Error statistics and scalability of quantum error mitigation formulas
    Qin, Dayue
    Chen, Yanzhu
    Li, Ying
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [50] LOWER BOUNDS FOR SAMPLING ALGORITHMS FOR ESTIMATING THE AVERAGE
    CANETTI, R
    EVEN, G
    GOLDREICH, O
    INFORMATION PROCESSING LETTERS, 1995, 53 (01) : 17 - 25