Universal Sampling Lower Bounds for Quantum Error Mitigation

被引:11
|
作者
Takagi, Ryuji [1 ,2 ]
Tajima, Hiroyasu [3 ,4 ]
Gu, Mile [2 ,5 ,6 ]
机构
[1] Univ Tokyo, Dept Basic Sci, Tokyo 1538902, Japan
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[3] Univ Electrocommun, Dept Commun Engn & Informat, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[4] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[6] CNRS UNS NUS NTU Int Joint Res Unit UMI 3654, MajuLab, Singapore, Singapore
关键词
All Open Access; Hybrid Gold; Green;
D O I
10.1103/PhysRevLett.131.210602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerous quantum error-mitigation protocols have been proposed, motivated by the critical need to suppress noise effects on intermediate-scale quantum devices. Yet, their general potential and limitations remain elusive. In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial to characterize the fundamental sampling cost-how many times an arbitrary mitigation protocol must run a noisy quantum device. Here, we establish universal lower bounds on the sampling cost for quantum error mitigation to achieve the desired accuracy with high probability. Our bounds apply to general mitigation protocols, including the ones involving nonlinear postprocessing and those yet to be discovered. The results imply that the sampling cost required for a wide class of protocols to mitigate errors must grow exponentially with the circuit depth for various noise models, revealing the fundamental obstacles in the scalability of useful noisy near-term quantum devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Superposed Quantum Error Mitigation
    Miguel-Ramiro, Jorge
    Shi, Zheng
    Dellantonio, Luca
    Chan, Albie
    Muschik, Christine A.
    Dur, Wolfgang
    PHYSICAL REVIEW LETTERS, 2023, 131 (23)
  • [32] Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs. Coded Systems
    Xiong, Yifeng
    Chandra, Daryus
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE ACCESS, 2020, 8 : 228967 - 228991
  • [33] On error bounds for lower semicontinuous functions
    Wu, ZL
    Ye, JJ
    MATHEMATICAL PROGRAMMING, 2002, 92 (02) : 301 - 314
  • [34] Lower bounds for Bayes error estimation
    Antos, A
    Devroye, L
    Györfi, L
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (07) : 643 - 645
  • [35] On error bounds for lower semicontinuous functions
    Zili Wu
    Jane J. Ye
    Mathematical Programming, 2002, 92 : 301 - 314
  • [36] Error Mitigation for Universal Gates on Encoded Qubits
    Piveteau, Christophe
    Sutter, David
    Bravyi, Sergey
    Gambetta, Jay M.
    Temme, Kristan
    PHYSICAL REVIEW LETTERS, 2021, 127 (20)
  • [37] Quantum lower bounds for fanout
    Fang, M.
    Fenner, S.
    Green, F.
    Homer, S.
    Zhang, Y.
    Quantum Information and Computation, 2006, 6 (01): : 046 - 057
  • [38] Quantum lower bounds for fanout
    Fang, M
    Fenner, S
    Homer, S
    Zhang, Y
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (01) : 46 - 57
  • [39] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    De Wolf, R
    JOURNAL OF THE ACM, 2001, 48 (04) : 778 - 797
  • [40] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    de Wolf, R
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 352 - 361