An adaptive Extremum Seeking scheme for non-convex optimisation

被引:0
|
作者
Mimmo, N. [1 ]
Marconi, L. [1 ]
机构
[1] Guglielmo Marconi Univ Bologna, Dept Elect & Informat Engn, I-40126 Bologna, Italy
关键词
STABILITY; SYSTEMS;
D O I
10.1109/CDC49753.2023.10383485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents an extremum-seeking scheme in which the dither is adaptively tuned to deal with non-convex cost functions. The adaptation law decreases the dither when local cost function trends are easily visible from output data. Contrarily, when the cost function does not have a dominant trend, the dither is increased to enrich the output data. This adaptive scheme can give advantages in practical applications when a conservatively large dither implies unnecessary high energy to optimise a cost function corrupted by non-uniform state-dependent disturbances. Numerical comparisons confirm the superior performance of the proposed solution.
引用
收藏
页码:6755 / 6760
页数:6
相关论文
共 50 条
  • [1] Uniform quasi-convex optimisation via Extremum Seeking
    Mimmo, Nicola
    Marconi, Lorenzo
    Notarstefano, Giuseppe
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6306 - 6311
  • [2] Adaptive Extremum Seeking Scheme for ABS Control
    Dincmen, E.
    [J]. 2014 13TH INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS (VSS), 2014,
  • [3] SIGNSGD: Compressed Optimisation for Non-Convex Problems
    Bernstein, Jeremy
    Wang, Yu-Xiang
    Azizzadenesheli, Kamyar
    Anandkumar, Anima
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [4] Robust adaptive beamforming based on sparse reconstruction using a non-convex optimisation algorithm
    Chen, Pei
    Zhao, Yongjun
    Liu, Chengcheng
    [J]. ELECTRONICS LETTERS, 2016, 52 (19) : 1584 - 1586
  • [5] Non-convex power plant modelling in energy optimisation
    Makkonen, S
    Lahdelma, R
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 171 (03) : 1113 - 1126
  • [6] Non-Convex Projection Adaptive Hammerstein Filtering
    Liu, Zhaoting
    Bao, Huiming
    Yao, Yingbiao
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (04) : 1813 - 1820
  • [7] Adaptive control via non-convex optimization
    Staus, GH
    Biegler, LT
    Ydstie, BE
    [J]. STATE OF THE ART IN GLOBAL OPTIMIZATION: COMPUTATIONAL METHODS AND APPLICATIONS, 1996, 7 : 119 - 137
  • [8] Scaling up stochastic gradient descent for non-convex optimisation
    Mohamad, Saad
    Alamri, Hamad
    Bouchachia, Abdelhamid
    [J]. MACHINE LEARNING, 2022, 111 (11) : 4039 - 4079
  • [9] Scaling up stochastic gradient descent for non-convex optimisation
    Saad Mohamad
    Hamad Alamri
    Abdelhamid Bouchachia
    [J]. Machine Learning, 2022, 111 : 4039 - 4079
  • [10] Optimisation of Classic Photometric Stereo by Non-convex Variational Minimisation
    Radow, Georg
    Hoeltgen, Laurent
    Queau, Yvain
    Breuss, Michael
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (01) : 84 - 105