An adaptive Extremum Seeking scheme for non-convex optimisation

被引:0
|
作者
Mimmo, N. [1 ]
Marconi, L. [1 ]
机构
[1] Guglielmo Marconi Univ Bologna, Dept Elect & Informat Engn, I-40126 Bologna, Italy
关键词
STABILITY; SYSTEMS;
D O I
10.1109/CDC49753.2023.10383485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents an extremum-seeking scheme in which the dither is adaptively tuned to deal with non-convex cost functions. The adaptation law decreases the dither when local cost function trends are easily visible from output data. Contrarily, when the cost function does not have a dominant trend, the dither is increased to enrich the output data. This adaptive scheme can give advantages in practical applications when a conservatively large dither implies unnecessary high energy to optimise a cost function corrupted by non-uniform state-dependent disturbances. Numerical comparisons confirm the superior performance of the proposed solution.
引用
收藏
页码:6755 / 6760
页数:6
相关论文
共 50 条
  • [31] Adaptive Coverage Control in Non-Convex Environments with Unknown Obstacles
    Adibi, M.
    Talebi, H. A.
    Nikravesh, K. Y.
    2013 21ST IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2013,
  • [32] Non-convex nonlocal adaptive tight frame image deblurring
    Shen, Zhengwei
    IET IMAGE PROCESSING, 2022, 16 (07) : 1908 - 1923
  • [33] Asymptotic Study of Stochastic Adaptive Algorithms in Non-convex Landscape
    Gadat, Sebastien
    Gavra, Ioana
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [34] Preface for the special issue of ADAC on ‘Optimisation and Non-Convex Programming in Data Mining’
    Hoai An Le Thi
    Tao Pham Dinh
    Gunter Ritter
    Advances in Data Analysis and Classification, 2008, 2 : 209 - 210
  • [35] Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem
    Stoyan, YG
    Novozhilova, MV
    Kartashov, AV
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 92 (01) : 193 - 210
  • [36] Adaptive extremum seeking control design
    Lavretsky, E
    Hovakimyan, N
    Calise, A
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 567 - 572
  • [37] NON-CONVEX DUALITY
    EKELAND, I
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1979, MEM (60): : 45 - 55
  • [38] Global optimisation of constrained non-convex programs using reformulation and interval analysis
    Byrne, RP
    Bogle, IDL
    COMPUTERS & CHEMICAL ENGINEERING, 1999, 23 (09) : 1341 - 1350
  • [39] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680
  • [40] Convex and Non-convex Flow Surfaces
    Bolchoun, A.
    Kolupaev, V. A.
    Altenbach, H.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2011, 75 (02): : 73 - 92