Non-Convex Projection Adaptive Hammerstein Filtering

被引:0
|
作者
Liu, Zhaoting [1 ]
Bao, Huiming [1 ]
Yao, Yingbiao [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
System identification; Nonlinear prediction; Adaptive filtering; Parameter estimation; Hammerstein system; PERFORMANCE ANALYSIS; IDENTIFICATION; SELECTION; SYSTEMS;
D O I
10.11999/JEIT220171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on adaptive filtering techniques for parameter identification of Hammerstein systems and output prediction of nonlinear systems. By formulating the underlying filtering problem as a recursive bilinear least-squares optimization with the non-convex feasible region constraint, an algorithmic framework is developed based on recursive least-squares and Alternating Direction Method of Multipliers (ADMM). Under this framework, the solution to nonconvex constraint optimization problem can be obtained by implementing ridge regression and Euclidean projection. Simulation results in the context of system identification, nonlinear predication, and acoustic echo cancellation, reveal that the proposed algorithm has good convergence and stability, and can obtain more accurate identification and prediction results.
引用
收藏
页码:1813 / 1820
页数:8
相关论文
共 16 条
  • [1] Identification and Robust Control of DC/DC Converter Hammerstein Model
    Alonge, Francesco
    D'Ippolito, Filippo
    Cangemi, Tornmaso
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (06) : 2990 - 3003
  • [2] Robust extended recursive least squares identification algorithm for Hammerstein systems with dynamic disturbances
    Dong, Shijian
    Yu, Li
    Zhang, Wen-An
    Chen, Bo
    [J]. DIGITAL SIGNAL PROCESSING, 2020, 101
  • [3] A Distributed Elastic Net Regression Algorithm for Private Data Analytics in Internet of Things
    Fang Weiwei
    Liu Mengran
    Wang Yunpeng
    Li Yangyang
    An Zhulin
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (10) : 2403 - 2411
  • [4] Steady-State Performance Analysis and Step-Size Selection for LMS-Adaptive Wideband Feedforward Power Amplifier Linearizer
    Gokceoglu, Ahmet
    Ghadam, Ali Shahed Hagh
    Valkama, Mikko
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 82 - 99
  • [5] Subspace-based identification algorithms for Hammerstein and Wiener models
    Gómez, JC
    Baeyens, E
    [J]. EUROPEAN JOURNAL OF CONTROL, 2005, 11 (02) : 127 - 136
  • [6] The Weighted Nearest Neighbor Estimate for Hammerstein System Identification
    Greblicki, Mlodzimierz
    Pawlak, Miroslaw
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1550 - 1565
  • [7] Single-Carrier Frequency Domain Equalization for Hammerstein Communication Systems Using Complex-Valued Neural Networks
    Hong, Xia
    Chen, Sheng
    Harris, Chris J.
    Khalaf, Emad F.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (17) : 4467 - 4478
  • [8] Stochastic mean-square performance analysis of an adaptive Hammerstein filter
    Jeraj, Janez
    Mathews, V. John
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (06) : 2168 - 2177
  • [9] Basis Function Selection of Frequency-Domain Hammerstein Self-Interference Canceller for In-Band Full-Duplex Wireless Communications
    Komatsu, Kazuki
    Miyaji, Yuichi
    Uehara, Hideyuki
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (06) : 3768 - 3780
  • [10] Recursive identification of Hammerstein systems with application to electrically stimulated muscle
    Le, Fengmin
    Markovsky, Ivan
    Freeman, Christopher T.
    Rogers, Eric
    [J]. CONTROL ENGINEERING PRACTICE, 2012, 20 (04) : 386 - 396