Coincident f (Q) gravity: black holes, regular black holes, and black bounces

被引:0
|
作者
Tarciso Junior, S. S. Jose [1 ]
Rodrigues, Manuel E. [1 ,2 ]
机构
[1] Univ Fed Para, Fac Fis, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil
[2] Univ Fed Para, Fac Ciencias Exatas & Tecnol, Campus Univ Abaetetuba, BR-68440000 Abaetetuba, Para, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 06期
关键词
R-MU-NU; GENERAL-RELATIVITY; ENERGY; MASS; WORMHOLES; DYNAMICS; UNIVERSE; LAMBDA; F(T;
D O I
10.1140/epjc/s10052-023-11660-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we will use the coincident gauge to investigate new solutions of the f (Q) theory applied in the context of black holes, regular black holes, and the black-bounce spacetime. For each of these approaches, we com-pute the linear solutions and the solutions with the constraint that the non-metricity scalar is zero. We also analyze the geodesics of each solution to interpret whether the space-time is extensible or not, find the Kretschmann scalar to determine the regularity along spacetime, and in the con -text of regular black holes and black-bounce, we calculate the energy conditions. In the latter black-bounce case we realize that the null energy condition (NEC), specifically the NEC1 = WEC1 = SEC1 ? ? + p(r )= 0, is satisfied outside the event horizon.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Rotating regular black holes in conformal massive gravity
    Jusufi, Kimet
    Jamil, Mubasher
    Chakrabarty, Hrishikesh
    Wu, Qiang
    Bambi, Cosimo
    Wang, Anzhong
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [32] Regular black holes in f(T) Gravity through a nonlinear electrodynamics source
    Junior, Ednaldo L. B.
    Rodrigues, Manuel E.
    Houndjo, Mahouton J. S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (10):
  • [33] Coincident f(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\mathbb {Q})$$\end{document} gravity: black holes, regular black holes, and black bounces
    José Tarciso S. S. Junior
    Manuel E. Rodrigues
    The European Physical Journal C, 83 (6):
  • [34] Regular black holes and confinement
    Burinskii, A
    Hildebrandt, SR
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 : B283 - B288
  • [35] Regular phantom black holes
    Bronnikov, K. A.
    Fabris, J. C.
    PHYSICAL REVIEW LETTERS, 2006, 96 (25)
  • [36] Deforming regular black holes
    Neves, J. C. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (18):
  • [37] Remarks on regular black holes
    Nicolini, Piero
    Smailagic, Anais
    Spallucci, Euro
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (02)
  • [38] Regular stringy black holes?
    Cano, Pablo A.
    Chimento, Samuele
    Ortin, Tomas
    Ruiperez, Alejandro
    PHYSICAL REVIEW D, 2019, 99 (04):
  • [39] Regular isolated black holes
    Kozameh, Carlos
    Moreschi, Osvaldo M.
    Perez, Alejandro
    I COSMOSUL: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE, 2012, 1471 : 124 - 127
  • [40] On regular rotating black holes
    Torres, R.
    Fayos, F.
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (01)