Planar Orthogonal Polynomials as Type I Multiple Orthogonal Polynomials

被引:5
|
作者
Berezin, Sergey [1 ,2 ]
Kuijlaars, Arno B. J. [1 ]
Parra, Ivan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B box 2400, B-3001 Leuven, Belgium
[2] RAS, VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
planar orthogonal polynomials; multiple orthogonal polynomials; Riemann-Hilbert problems; Hermite-Pade approximation; normal matrix model; RIEMANN-HILBERT PROBLEMS; ASYMPTOTICS; UNIVERSALITY; RESPECT;
D O I
10.3842/SIGMA.2023.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent result of S.-Y. Lee and M. Yang states that the planar orthogonal polynomials orthogonal with respect to a modified Gaussian measure are multiple orthogonal polynomials of type II on a contour in the complex plane. We show that the same polynomials are also type I orthogonal polynomials on a contour, provided the exponents in the weight are integer. From this orthogonality, we derive several equivalent Riemann-Hilbert problems. The proof is based on the fundamental identity of Lee and Yang, which we establish using a new technique.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials
    Berti, AC
    Bracciali, CF
    Ranga, AS
    NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 203 - 216
  • [43] Mixed Type Multiple Orthogonal Polynomials for Two Nikishin Systems
    U. Fidalgo Prieto
    A. López García
    G. López Lagomasino
    V. N. Sorokin
    Constructive Approximation, 2010, 32 : 255 - 306
  • [44] Mixed Type Multiple Orthogonal Polynomials for Two Nikishin Systems
    Fidalgo Prieto, U.
    Garcia, A. Lopez
    Lopez Lagomasino, G.
    Sorokin, V. N.
    CONSTRUCTIVE APPROXIMATION, 2010, 32 (02) : 255 - 306
  • [45] On Freud–Sobolev type orthogonal polynomials
    Luis E. Garza
    Edmundo J. Huertas
    Francisco Marcellán
    Afrika Matematika, 2019, 30 : 505 - 528
  • [46] Characterizations of Orthogonal Generalized Gegenbauer-Humbert Polynomials and Orthogonal Sheffer-type Polynomials
    He, Tian-Xiao
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (04) : 701 - 723
  • [47] Combinatorics of orthogonal polynomials of type RI
    Kim, Jang Soo
    Stanton, Dennis
    RAMANUJAN JOURNAL, 2023, 61 (02): : 329 - 390
  • [48] HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS OF JACOBI TYPE
    Bernstein, Joseph
    Gourevitch, Dmitry
    Sahi, Siddhartha
    arXiv,
  • [49] A FORMULA OF HILB TYPE FOR ORTHOGONAL POLYNOMIALS
    VOIT, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 49 (1-3) : 339 - 348
  • [50] CHARACTERIZATION OF CLASSICAL TYPE ORTHOGONAL POLYNOMIALS
    KWON, KH
    LITTLEJOHN, LL
    LEE, JK
    YOO, BH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) : 485 - 493