Planar Orthogonal Polynomials as Type I Multiple Orthogonal Polynomials

被引:5
|
作者
Berezin, Sergey [1 ,2 ]
Kuijlaars, Arno B. J. [1 ]
Parra, Ivan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B box 2400, B-3001 Leuven, Belgium
[2] RAS, VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
planar orthogonal polynomials; multiple orthogonal polynomials; Riemann-Hilbert problems; Hermite-Pade approximation; normal matrix model; RIEMANN-HILBERT PROBLEMS; ASYMPTOTICS; UNIVERSALITY; RESPECT;
D O I
10.3842/SIGMA.2023.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent result of S.-Y. Lee and M. Yang states that the planar orthogonal polynomials orthogonal with respect to a modified Gaussian measure are multiple orthogonal polynomials of type II on a contour in the complex plane. We show that the same polynomials are also type I orthogonal polynomials on a contour, provided the exponents in the weight are integer. From this orthogonality, we derive several equivalent Riemann-Hilbert problems. The proof is based on the fundamental identity of Lee and Yang, which we establish using a new technique.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] ORTHOGONAL POLYNOMIALS
    NEVAI, PG
    JOURNAL OF APPROXIMATION THEORY, 1979, 25 (01) : 34 - 37
  • [22] Orthogonal Polynomials
    Haran, Shai M. J.
    ARITHMETICAL INVESTIGATIONS: REPRESENTATION THEORY, ORTHOGONAL POLYNOMIALS, AND QUANTUM INTERPOLATIONS, 2008, 1941 : 203 - 208
  • [23] ORTHOGONAL POLYNOMIALS
    NEVAI, PG
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 18 (213) : 1 - 185
  • [24] ORTHOGONAL POLYNOMIALS
    JURY, EI
    AHN, SM
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1975, 300 (03): : 169 - 173
  • [25] On orthogonal polynomials
    Geronimus, J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) : 322 - 328
  • [26] Christoffel functions for multiple orthogonal polynomials
    Swiderski, Grzegorz
    Van Assche, Walter
    JOURNAL OF APPROXIMATION THEORY, 2022, 283
  • [27] Some discrete multiple orthogonal polynomials
    Arvesú, J
    Coussement, J
    Van Assehe, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 19 - 45
  • [29] Multiple orthogonal polynomials and random walks
    Branquinho, Amílcar
    Foulquié-Moreno, Ana
    Mañas, Manuel
    Álvarez-Fernández, Carlos
    Fernández-Díaz, Juan E.
    arXiv, 2021,
  • [30] Multiple orthogonal polynomials on the semicircle and applications
    Stanic, Marija P.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 269 - 282