Planar Orthogonal Polynomials as Type I Multiple Orthogonal Polynomials

被引:5
|
作者
Berezin, Sergey [1 ,2 ]
Kuijlaars, Arno B. J. [1 ]
Parra, Ivan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B box 2400, B-3001 Leuven, Belgium
[2] RAS, VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
planar orthogonal polynomials; multiple orthogonal polynomials; Riemann-Hilbert problems; Hermite-Pade approximation; normal matrix model; RIEMANN-HILBERT PROBLEMS; ASYMPTOTICS; UNIVERSALITY; RESPECT;
D O I
10.3842/SIGMA.2023.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent result of S.-Y. Lee and M. Yang states that the planar orthogonal polynomials orthogonal with respect to a modified Gaussian measure are multiple orthogonal polynomials of type II on a contour in the complex plane. We show that the same polynomials are also type I orthogonal polynomials on a contour, provided the exponents in the weight are integer. From this orthogonality, we derive several equivalent Riemann-Hilbert problems. The proof is based on the fundamental identity of Lee and Yang, which we establish using a new technique.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Planar orthogonal polynomials as Type II multiple orthogonal polynomials
    Lee, Seung-Yeop
    Yang, Meng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (27)
  • [2] Hahn multiple orthogonal polynomials of type I: Hypergeometric expressions
    Branquinho, Amilcar
    Diaz, Juan E. F.
    Foulquie-Moreno, Ana
    Manas, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [3] Multiple orthogonal polynomials
    Aptekarev, AI
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 423 - 447
  • [4] Orthogonal Polynomials on Planar Cubic Curves
    Fasondini, Marco
    Olver, Sheehan
    Xu, Yuan
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (01) : 1 - 31
  • [5] Orthogonal Polynomials on a Planar Quartic Curve
    Phung Van Manh
    Mediterranean Journal of Mathematics, 2024, 21
  • [6] Orthogonal Polynomials on Planar Cubic Curves
    Marco Fasondini
    Sheehan Olver
    Yuan Xu
    Foundations of Computational Mathematics, 2023, 23 : 1 - 31
  • [7] Orthogonal Polynomials on a Planar Quartic Curve
    Van Manh, Phung
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [8] MULTIPLE ORTHOGONAL POLYNOMIALS ON THE SEMICIRCLE
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    Stanic, Marija P.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2005, 20 : 41 - 55
  • [9] On Lp multiple orthogonal polynomials
    Kroo, Andras
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) : 147 - 156
  • [10] BEREZIN DENSITY AND PLANAR ORTHOGONAL POLYNOMIALS
    Hedenmalm, Haakan
    Wennman, Aron
    arXiv, 2022,