Updating knowledge in estimating the genetics parameters: Multi-trait and Multi-Environment Bayesian analysis in rice

被引:0
|
作者
Azevedo, Camila Ferreira [1 ]
Valiati Barreto, Cynthia Aparecida [2 ]
Suela, Matheus Massariol [2 ]
Nascimento, Moyses [1 ]
da Silva Junior, Antonio Carlos [2 ]
Campana Nascimento, Ana Carolina [1 ]
Cruz, Cosme Damiao [2 ]
Soraes, Plinio Cesar [3 ]
机构
[1] Univ Fed Vicosa, Dept Estat, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Biol Geral, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[3] Empresa Pesquisa Agropecuaria Minas Gerais, Ave Jose Candido da Silveira 1647, BR-31170495 Belo Horizonte, MG, Brazil
来源
SCIENTIA AGRICOLA | 2023年 / 80卷
关键词
MCMC; genetic correlation; genetic improvement; heritability; prior distribution; MIXED MODELS;
D O I
10.1590/1678-992X-2022-0056
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Among the multi-trait models selected to study several traits and environments jointly, the Bayesian framework has been a preferred tool when constructing a more complex and biologically realistic model. In most cases, non-informative prior distributions are adopted in studies using the Bayesian approach. However, the Bayesian approach presents more accurate estimates when informative prior distributions are used. The present study was developed to evaluate the efficiency and applicability of multi-trait multi-environment (MTME) models within a Bayesian framework utilizing a strategy for eliciting informative prior distribution using previous data on rice. The study involved data pertaining to rice (Oryza sativa L.) genotypes in three environments and five crop seasons (2010/2011 until 2014/2015) for the following traits: grain yield (GY), flowering in days (FLOR) and plant height (PH). Variance components, genetic and non-genetic parameters were estimated using the Bayesian method. In general, the informative prior distribution in Bayesian MTME models provided higher estimates of individual narrow-sense heritability and variance components, as well as minor lengths for the highest probability density interval (HPD), compared to their respective non-informative prior distribution analyses. More informative prior distributions make it possible to detect genetic correlations between traits, which cannot be achieved with non-informative prior distributions. Therefore, this mechanism presented to update knowledge for an elicitation of an informative prior distribution can be efficiently applied in rice breeding programs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Genomic Bayesian Multi-trait and Multi-environment Model
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Toledo, Fernando H.
    Perez-Hernandez, Oscar
    Eskridge, Kent M.
    Rutkoski, Jessica
    G3-GENES GENOMES GENETICS, 2016, 6 (09): : 2725 - 2744
  • [2] An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Javier Luna-Vazquez, Francisco
    Toledo, Fernando H.
    Perez-Rodriguez, Paulino
    Lillemo, Morten
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2019, 9 (05): : 1355 - 1369
  • [3] Multi-trait and multi-environment Bayesian analysis to predict the G x E interaction in flood-irrigated rice
    da Silva Junior, Antonio Carlos
    Sant'Anna, Isabela de Castro
    Silva Siqueira, Michele Jorge
    Cruz, Cosme Damiao
    Azevedo, Camila Ferreira
    Nascimento, Moyses
    Soares, Plinio Cesar
    PLOS ONE, 2022, 17 (05):
  • [4] Multi-trait multi-environment diallel analyses for maize breeding
    Coelho, Igor Ferreira
    Alves, Rodrigo Silva
    Rocha, Joao Romero do Amaral Santos de Carvalho
    Peixoto, Marco Antonio
    Teodoro, Larissa Pereira Ribeiro
    Teodoro, Paulo Eduardo
    Pinto, Jefferson Fernando Naves
    dos Reis, Edesio Fialho
    Bhering, Leonardo Lopes
    EUPHYTICA, 2020, 216 (09)
  • [5] Multi-trait multi-environment diallel analyses for maize breeding
    Igor Ferreira Coelho
    Rodrigo Silva Alves
    João Romero do Amaral Santos de Carvalho Rocha
    Marco Antônio Peixoto
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Jefferson Fernando Naves Pinto
    Edésio Fialho dos Reis
    Leonardo Lopes Bhering
    Euphytica, 2020, 216
  • [6] Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases
    Sukhwinder-Singh
    Hernandez, Mateo V.
    Crossa, Jose
    Singh, Pawan K.
    Bains, Navtej S.
    Singh, Kuldeep
    Sharma, Indu
    PLOS ONE, 2012, 7 (06):
  • [7] Multi-trait multi-environment models in the genetic selection of segregating soybean progeny
    Volpato, Leonardo
    Alves, Rodrigo Silva
    Teodoro, Paulo Eduardo
    Vilela de Resende, Marcos Deon
    Nascimento, Moyses
    Campana Nascimento, Ana Carolina
    Ludke, Willian Hytalo
    da Silva, Felipe Lopes
    Borem, Aluizio
    PLOS ONE, 2019, 14 (04):
  • [8] A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Cuevas, Jaime
    Montesinos-Lopez, Jose C.
    Salas Gutierrez, Zitlalli
    Lillemo, Morten
    Philomin, Juliana
    Singh, Ravi
    G3-GENES GENOMES GENETICS, 2019, 9 (10): : 3381 - 3393
  • [9] Estimating individual age-at-death parameters through multi-trait Bayesian analysis.
    Kimmerle, E. H.
    Kongisberg, L. W.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2004, : 125 - 125
  • [10] Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop
    Saludares, Rica Amor
    Atanda, Sikiru Adeniyi
    Piche, Lisa
    Worral, Hannah
    Dariva, Francoise
    McPhee, Kevin
    Bandillo, Nonoy
    PLANT GENOME, 2024,