Cellsketch: Simplified Cell Representation for Label-free Cell and Nuclei Segmentation

被引:0
|
作者
Novianti, Ira [1 ]
Mizukami, Shin [1 ,2 ]
机构
[1] Tohoku Univ, Grad Sch Life Sci, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
关键词
D O I
10.1109/EMBC40787.2023.10340497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel technique for cell segmentation, named " Cellsketch," which generates an RGB mask containing simplified representations of cells (including nuclei, whole-cell, and cell boundaries) from microscopic images, and applies the watershed algorithm to produce segmentation masks of cells and nuclei. The RGB mask is generated using a generator model trained with a combination of L1 loss and adversarial loss. The method achieved accurate cell and nuclei segmentation from differential interference contrast (DIC) images using only automatically annotated training data and shows potential for a generalizable algorithm for cell segmentation. The code is freely available at: https://github.com/iranovianti/cellsketch
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Label-free cell profiling
    Schasfoort, Richard B. M.
    Bentlage, Arthur E. H.
    Stojanovic, Ivan
    van der Kooi, Alex
    van der Schoot, Ellen
    Terstappen, Leon W. M. M.
    Vidarsson, Gestur
    ANALYTICAL BIOCHEMISTRY, 2013, 439 (01) : 4 - 6
  • [2] Deep-Learning-Based Label-Free Segmentation of Cell Nuclei in Time-Lapse Refractive Index Tomograms
    Lee, Jimin
    Kim, Hyejin
    Cho, Hyungjoo
    Jo, Youngju
    Song, Yujin
    Ahn, Daewoong
    Lee, Kangwon
    Park, Yongkeun
    Ye, Sung-Joon
    IEEE ACCESS, 2019, 7 : 83449 - 83460
  • [3] In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA
    Yao, Da-Kang
    Maslov, Konstantin
    Shung, Kirk K.
    Zhou, Qifa
    Wang, Lihong V.
    OPTICS LETTERS, 2010, 35 (24) : 4139 - 4141
  • [4] Label-free T cell characterization
    Mukhopadhyay, Madhura
    NATURE METHODS, 2020, 17 (10) : 957 - 957
  • [5] Label-free T cell characterization
    Madhura Mukhopadhyay
    Nature Methods, 2020, 17 : 957 - 957
  • [6] Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
    Tomas Vicar
    Jan Balvan
    Josef Jaros
    Florian Jug
    Radim Kolar
    Michal Masarik
    Jaromir Gumulec
    BMC Bioinformatics, 20
  • [7] Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
    Vicar, Tomas
    Balvan, Jan
    Jaros, Josef
    Jug, Florian
    Kolar, Radim
    Masarik, Michal
    Gumulec, Jaromir
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [8] LIVECell—A large-scale dataset for label-free live cell segmentation
    Christoffer Edlund
    Timothy R. Jackson
    Nabeel Khalid
    Nicola Bevan
    Timothy Dale
    Andreas Dengel
    Sheraz Ahmed
    Johan Trygg
    Rickard Sjögren
    Nature Methods, 2021, 18 : 1038 - 1045
  • [9] Label-Free Biosensors for Cell Biology
    Fang, Ye
    INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY, 2011, 2011
  • [10] Label-Free Noninvasive Cell Characterization
    Hwang, James C. M.
    IEEE MICROWAVE MAGAZINE, 2021, 22 (05) : 78 - 87