Cellsketch: Simplified Cell Representation for Label-free Cell and Nuclei Segmentation

被引:0
|
作者
Novianti, Ira [1 ]
Mizukami, Shin [1 ,2 ]
机构
[1] Tohoku Univ, Grad Sch Life Sci, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
关键词
D O I
10.1109/EMBC40787.2023.10340497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel technique for cell segmentation, named " Cellsketch," which generates an RGB mask containing simplified representations of cells (including nuclei, whole-cell, and cell boundaries) from microscopic images, and applies the watershed algorithm to produce segmentation masks of cells and nuclei. The RGB mask is generated using a generator model trained with a combination of L1 loss and adversarial loss. The method achieved accurate cell and nuclei segmentation from differential interference contrast (DIC) images using only automatically annotated training data and shows potential for a generalizable algorithm for cell segmentation. The code is freely available at: https://github.com/iranovianti/cellsketch
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Tumor Cell Differentiation by Label-Free Microscopy
    Schneckenburger, Herbert
    Weber, Petra
    Wagner, Michael
    3RD INTERNATIONAL TOPICAL MEETING ON OPTICAL SENSING AND ARTIFICIAL VISION (OSAV'2012), 2013, 1537 : 226 - 230
  • [22] Label-free monitoring of whole cell vitality
    Weiss, D.
    Brischwein, M.
    Grothe, H.
    Wolf, B.
    Wiest, J.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 1607 - 1610
  • [23] Deep Learning in Label-free Cell Classification
    Chen, Claire Lifan
    Mahjoubfar, Ata
    Tai, Li-Chia
    Blaby, Ian K.
    Huang, Allen
    Niazi, Kayvan Reza
    Jalali, Bahram
    SCIENTIFIC REPORTS, 2016, 6
  • [24] Label-free visualization of the cell cycle and mitosis
    Burke, Michael J.
    Batista, Victor S.
    Davis, Caitlin M.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 142A - 142A
  • [25] Label-Free Liver Tumor Segmentation
    Hu, Qixin
    Chen, Yixiong
    Xiao, Junfei
    Sun, Shuwen
    Chen, Jieneng
    Yuille, Alan
    Zhou, Zongwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7422 - 7432
  • [26] Label-free cell segmentation of diverse tissues in 2D and 3D
    Wills, John W.
    Robertson, Jack
    Tourlomousis, Pani
    Gillis, Clare M. C.
    Barnes, Claire M.
    Miniter, Michelle
    Hewitt, Rachel E.
    Bryant, Clare E.
    Summers, Huw D.
    Powell, Jonathan J.
    Rees, Paul
    CELL REPORTS METHODS, 2023, 3 (02):
  • [27] Label-Free Cancer Cell Detection with Impedimetric Transducers
    de la Rica, Roberto
    Thompson, Sebastian
    Baldi, Antonio
    Fernandez-Sanchez, Cesar
    Drain, Charles Michael
    Matsui, Hiroshi
    ANALYTICAL CHEMISTRY, 2009, 81 (24) : 10167 - 10171
  • [28] Advantages of Label-Free Cell-Based Assays
    Stein, Richord A.
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2008, 28 (18): : 4 - 5
  • [29] Label-free Multiscale Transport Imaging of the Living Cell
    Osvath, Szabolcs
    Herenyi, Levente
    Agocs, Gergely
    Kis-Petik, Katalin
    Kellermayer, Miklos
    BIOPHYSICAL JOURNAL, 2018, 115 (05) : 874 - 880
  • [30] Label-free cell-based functional assays
    Minor, Lisa K.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2008, 11 (07) : 573 - 580