Biotransformation Of L-Tryptophan To Produce Arcyriaflavin A With Pseudomonas putida KT2440

被引:1
|
作者
Bitzenhofer, Nora Lisa [1 ]
Classen, Thomas [2 ]
Jaeger, Karl-Erich [1 ,2 ]
Loeschcke, Anita [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Forsch Zentrum Julich, Inst Mol Enzyme Technol, Stetternicher Forst, Bldg 15-8, D-52426 Julich, Germany
[2] Forsch Zentrum Julich, Inst Bio & Geosci IBG Biotechnol 1, Stetternicher Forst, Bldg 15-8, D-52425 Julich, Germany
关键词
arcyriaflavin A production; biotransformation; design of experiment; P. putida KT2440; strain engineering; OUTER-MEMBRANE VESICLES; ESCHERICHIA-COLI; INDOLOCARBAZOLE; BIOSYNTHESIS; BIOGENESIS; HOST; TRANSFORMATION; STAUROSPORINE; REBECCAMYCIN; INHIBITORS;
D O I
10.1002/cbic.202300576
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Natural products such as indolocarbazoles are a valuable source of highly bioactive compounds with numerous potential applications in the pharmaceutical industry. Arcyriaflavin A, isolated from marine invertebrates and slime molds, is one representative of this group and acts as a cyclin D1-cyclin-dependent kinase 4 inhibitor. To date, access to this compound has mostly relied on multi-step total synthesis. In this study, biosynthetic access to arcyriaflavin A was explored using recombinant Pseudomonas putida KT2440 based on a previously generated producer strain. We used a Design of Experiment approach to analyze four key parameters, which led to the optimization of the bioprocess. By engineering the formation of outer membrane vesicles and using an adsorbent in the culture broth, we succeeded to increase the yield of arcyriaflavin A in the cell-free supernatant, resulting in a nearly eight-fold increase in the overall production titers. Finally, we managed to scale up the bioprocess leading to a final yield of 4.7 mg arcyriaflavin A product isolated from 1 L of bacterial culture. Thus, this study showcases an integrative approach to improve biotransformation and moreover also provides starting points for further optimization of indolocarbazole production in P. putida.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440
    Liu, Huizhong
    Xiao, Yujie
    Nie, Hailing
    Huang, Qiaoyun
    Chen, Wenli
    MICROBIOLOGICAL RESEARCH, 2017, 204 : 1 - 8
  • [42] Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos
    Gong, Ting
    Liu, Ruihua
    Che, You
    Xu, Xiaoqing
    Zhao, Fengjie
    Yu, Huilei
    Song, Cunjiang
    Liu, Yanping
    Yang, Chao
    MICROBIAL BIOTECHNOLOGY, 2016, 9 (06): : 792 - 800
  • [43] Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand
    Ebert, Birgitta E.
    Kurth, Felix
    Grund, Marcel
    Blank, Lars M.
    Schmid, Andreas
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (18) : 6597 - 6605
  • [44] Proteomic Characterization of the Outer Membrane Vesicle of Pseudomonas putida KT2440
    Choi, Chi-Won
    Park, Edmond Changkyun
    Yun, Sung Ho
    Lee, Sang-Yeop
    Lee, Yeol Gyun
    Hong, Yeonhee
    Park, Kyeong Ryang
    Kim, Sang-Hyun
    Kim, Gun-Hwa
    Kim, Seung Il
    JOURNAL OF PROTEOME RESEARCH, 2014, 13 (10) : 4298 - 4309
  • [45] β-oxidation–polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited
    Si Liu
    Tanja Narancic
    Jia-Lynn Tham
    Kevin E. O’Connor
    Applied Microbiology and Biotechnology, 2023, 107 : 1863 - 1874
  • [46] Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization
    Franden, Mary Ann
    Jayakody, Lahiru N.
    Li, Wing-Jin
    Wagner, Neil J.
    Cleveland, Nicholas S.
    Michener, William E.
    Hauer, Bernhard
    Blank, Lars M.
    Wierckx, Nick
    Klebensberger, Janosch
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2018, 48 : 197 - 207
  • [47] Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered Pseudomonas putida KT2440
    Upadhyay, Priya
    Singh, Nitesh K.
    Tupe, Rasika
    Odenath, Annamma
    Lali, Arvind
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2020, 50 (04): : 341 - 348
  • [48] Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
    Askitosari, Theresia D.
    Berger, Carola
    Tiso, Till
    Harnisch, Falk
    Blank, Lars M.
    Rosenbaum, Miriam A.
    MICROORGANISMS, 2020, 8 (12) : 1 - 15
  • [49] Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress
    Gulez, Gamze
    Dechesne, Arnaud
    Workman, Christopher T.
    Smets, Barth F.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (03) : 676 - 683
  • [50] Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440
    Pini, Cecilia
    Godoy, Patricia
    Bernal, Patricia
    Ramos, Juan-Luis
    Segura, Ana
    FEMS MICROBIOLOGY LETTERS, 2011, 321 (02) : 107 - 114