Leveraging hierarchical language models for aspect-based sentiment analysis on financial data

被引:20
|
作者
Lengkeek, Matteo [1 ]
Knaap, Finn van der [1 ]
Frasincar, Flavius [1 ]
机构
[1] Erasmus Univ, POB 1738, NL-3000 DR Rotterdam, Netherlands
关键词
Text data; Financial aspect classes; Polarity; Hierarchical structure of data; INFORMATION-CONTENT;
D O I
10.1016/j.ipm.2023.103435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Every day millions of news articles and (micro)blogs that contain financial information are posted online. These documents often include insightful financial aspects with associated sentiments. In this paper, we predict financial aspect classes and their corresponding polarities (sentiment) within sentences. We use data from the Financial Question & Answering (FiQA) challenge, more precisely the aspect-based financial sentiment analysis task. We incorporate the hierarchical structure of the data by using the parent aspect class predictions to improve the child aspect class prediction (two-step model). Furthermore, we incorporate model output from the child aspect class prediction when predicting the polarity. We improve the F1 score by 7.6% using the two-step model for aspect classification over direct aspect classification in the test set. Furthermore, we improve the state-of-the-art test F1 score of the original aspect classification challenge from 0.46 to 0.70. The model that incorporates output from the child aspect classification performs up to par in polarity classification with our plain RoBERTa model. In addition, our plain RoBERTa model outperforms all the state-of-the-art models, lowering the MSE score by at least 28% and 33% for the cross-validation set and the test set, respectively.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Novel Counterfactual Data Augmentation Method for Aspect-Based Sentiment Analysis
    Wu, Dongming
    Wen, Lulu
    Chen, Chao
    Shi, Zhaoshu
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [42] Aspect-Based Sentiment Analysis for User Reviews
    Yin Zhang
    Jinyang Du
    Xiao Ma
    Haoyu Wen
    Giancarlo Fortino
    Cognitive Computation, 2021, 13 : 1114 - 1127
  • [43] Aspect-based sentiment analysis using smart government review data
    Alqaryouti, Omar
    Siyam, Nur
    Monem, Azza Abdel
    Shaalan, Khaled
    APPLIED COMPUTING AND INFORMATICS, 2024, 20 (1/2) : 142 - 161
  • [44] Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis
    Wan, Hai
    Yang, Yufei
    Du, Jianfeng
    Liu, Yanan
    Qi, Kunxun
    Pan, Jeff Z.
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9122 - 9129
  • [45] Datasets for Aspect-Based Sentiment Analysis in French
    Apidianaki, Marianna
    Tannier, Xavier
    Richart, Cecile
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1122 - 1126
  • [46] A Survey on Multimodal Aspect-Based Sentiment Analysis
    Zhao, Hua
    Yang, Manyu
    Bai, Xueyang
    Liu, Han
    IEEE ACCESS, 2024, 12 : 12039 - 12052
  • [47] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [48] Aspect-based sentiment analysis of mobile reviews
    Gupta, Vedika
    Singh, Vivek Kumar
    Mukhija, Pankaj
    Ghose, Udayan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4721 - 4730
  • [49] A corpus for aspect-based sentiment analysis in Vietnamese
    Nguyen, Minh-Hao
    Nguyen, Tri Minh
    Thin, Dang Van
    Nguyen, Ngan Luu-Thuy
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 317 - 321
  • [50] Towards Generative Aspect-Based Sentiment Analysis
    Zhang, Wenxuan
    Li, Xin
    Deng, Yang
    Bing, Lidong
    Lam, Wai
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 504 - 510