Space-shifted toroidal, spherical solitons and collisions for the nonlocal coupled nonlinear Schrödinger equations

被引:0
|
作者
Li, Li [1 ]
Fan, Chengcheng [1 ]
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
关键词
Space-shifted nonlocal coupled nonlinear Schrodinger equations; Space-shifted bright soliton; Toroidal and spherical solitons; SCHRODINGER-EQUATION;
D O I
10.1007/s11071-024-09315-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Some space-shifted bright soliton solutions in terms of determinants for the space-shifted nonlocal coupled nonlinear Schrodinger (NCNLS) equations are constructed by using the improving Hirota's bilinear method. A few of 1-bright and 2-bright solitons of the NCNLS equations are derived with a function e2i gamma t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>{2i\gamma t}$$\end{document} and the space-shifted term x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. The influence of the space-shifted parameters for the solution is significant, and some novel dynamic behaviors of the space-shifted solutions are presented. The two-bright solitons admit some novel patterns, whose amplitudes increase or decrease with time. The bright-breather soliton solutions are derived through a long wave limit of the obtained bright soliton solutions, and their collision dynamics are also investigated. And some bright solitons can occur elastic collisions, which shows that some expressions of the soliton amplitudes are independent on the phase shift factor x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. Some novel toroidal and spherical bright solitons, breather solitons are derived by the toroidal and spherical coordinate transformations.
引用
收藏
页码:6505 / 6516
页数:12
相关论文
共 50 条
  • [41] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation
    T. A. Gadzhimuradov
    A. M. Agalarov
    R. Radha
    B. Tamil Arasan
    Nonlinear Dynamics, 2020, 99 : 1295 - 1300
  • [42] Domain walls and vector solitons in the coupled nonlinear Schrödinger equation
    Snee, David D. J. M.
    Ma, Yi-Ping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (03)
  • [43] Interaction of coupled higher order nonlinear Schrödinger equation solitons
    A. Borah
    S. Ghosh
    S. Nandy
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 221 - 225
  • [44] The existence of discrete solitons for the discrete coupled nonlinear Schrödinger system
    Meihua Huang
    Zhan Zhou
    Boundary Value Problems, 2023
  • [45] New kink-antikink solitons of the pair-transition-coupled nonlinear Schrödinger equations
    Triki, Houria
    Aouadi, Sassi
    Wei, Chun
    Zhou, Qin
    PHYSICS LETTERS A, 2025, 536
  • [46] Nonlocal Nonlinear Schr?dinger System with Shifted Parity and Delayed Time Reversal Symmetries
    李聪聪
    夏骞
    楼森岳
    CommunicationsinTheoreticalPhysics, 2018, 70 (07) : 7 - 13
  • [47] Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations
    Guan, Liang
    Geng, Xianguo
    Geng, Xue
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [48] Rogue waves in a reverse space nonlocal nonlinear Schrödinger equation
    Wang, Xin
    He, Jingsong
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 469
  • [49] Vector solitons and localized waves of two coupled nonlinear Schrödinger equations in the nonlinear electrical transmission line lattice
    Houwe, Alphonse
    Abbagari, Souleymanou
    Akinyemi, Lanre
    Doka, Serge Yamigno
    WAVE MOTION, 2025, 136
  • [50] Global Attractor for a Class of Coupled Nonlinear Schrödinger Equations
    Li G.
    Zhu C.
    SeMA Journal, 2012, 60 (1) : 5 - 25