Space-shifted toroidal, spherical solitons and collisions for the nonlocal coupled nonlinear Schrödinger equations

被引:0
|
作者
Li, Li [1 ]
Fan, Chengcheng [1 ]
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
关键词
Space-shifted nonlocal coupled nonlinear Schrodinger equations; Space-shifted bright soliton; Toroidal and spherical solitons; SCHRODINGER-EQUATION;
D O I
10.1007/s11071-024-09315-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Some space-shifted bright soliton solutions in terms of determinants for the space-shifted nonlocal coupled nonlinear Schrodinger (NCNLS) equations are constructed by using the improving Hirota's bilinear method. A few of 1-bright and 2-bright solitons of the NCNLS equations are derived with a function e2i gamma t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>{2i\gamma t}$$\end{document} and the space-shifted term x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. The influence of the space-shifted parameters for the solution is significant, and some novel dynamic behaviors of the space-shifted solutions are presented. The two-bright solitons admit some novel patterns, whose amplitudes increase or decrease with time. The bright-breather soliton solutions are derived through a long wave limit of the obtained bright soliton solutions, and their collision dynamics are also investigated. And some bright solitons can occur elastic collisions, which shows that some expressions of the soliton amplitudes are independent on the phase shift factor x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. Some novel toroidal and spherical bright solitons, breather solitons are derived by the toroidal and spherical coordinate transformations.
引用
收藏
页码:6505 / 6516
页数:12
相关论文
共 50 条
  • [31] Nonlocal Nonlinear Schrödinger Equations in R3
    Zaihui Gan
    Jian Zhang
    Archive for Rational Mechanics and Analysis, 2013, 209 : 1 - 39
  • [32] On a class of nonlocal nonlinear Schrödinger equations and wave collapse
    M. Ablowitz
    I. Bakirtas
    B. Ilan
    The European Physical Journal Special Topics, 2007, 147 : 343 - 362
  • [33] Solitons and other solutions for coupled nonlinear Schrödinger equations using three different techniques
    Elsayed M E Zayed
    Abdul-Ghani Al-Nowehy
    Mona E M Elshater
    Pramana, 2019, 92
  • [34] Effect of phase shift in shape changing collision of solitons in coupled nonlinear Schrödinger equations
    T. Kanna
    M. Lakshmanan
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 249 - 254
  • [35] Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation
    Xiu-Bin Wang
    Shou-Fu Tian
    Theoretical and Mathematical Physics, 2022, 212 : 1193 - 1210
  • [36] Capturing of solitons collisions and reflections in nonlinear Schrödinger type equations by a conservative scheme based on MOL
    Mohamed M. Mousa
    Praveen Agarwal
    Fahad Alsharari
    Shaher Momani
    Advances in Difference Equations, 2021
  • [37] Standing Waves of the Coupled Nonlinear Schrdinger Equations
    Linlin Yang
    Gongming Wei
    Analysis in Theory and Applications, 2014, 30 (04) : 345 - 353
  • [38] Coupled nonlinear Schrödinger equations with harmonic potential
    Hezzi H.
    Nour M.M.
    Saanouni T.
    Arabian Journal of Mathematics, 2018, 7 (3) : 195 - 218
  • [39] Šilnikov manifolds in coupled nonlinear Schrödinger equations
    Haller, G.
    Menon, G.
    Rothos, V.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (03): : 175 - 185
  • [40] CONCENTRATION OF COUPLED CUBIC NONLINEAR SCHRDINGER EQUATIONS
    李晓光
    张健
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (10) : 117 - 122