An Artificial Intelligence Generated Automated Algorithm to Measure Total Kidney Volume in ADPKD

被引:5
|
作者
Taylor, Jonathan [1 ]
Thomas, Richard [1 ]
Metherall, Peter [1 ]
van Gastel, Marieke [2 ]
Cornec-Le Gall, Emilie [3 ]
Caroli, Anna [4 ]
Furlano, Monica [5 ]
Demoulin, Nathalie [6 ]
Devuyst, Olivier [6 ]
Winterbottom, Jean [7 ,8 ]
Torra, Roser [5 ]
Perico, Norberto [4 ]
Le Meur, Yannick [9 ]
Schoenherr, Sebastian [10 ]
Forer, Lukas [10 ]
Gansevoort, Ron T. [2 ]
Simms, Roslyn J. [7 ,8 ,11 ]
Ong, Albert C. M. [7 ,8 ,11 ]
机构
[1] Sheffield Teaching Hosp NHS Fdn Trust, Med Imaging Med Phys, 3DLab, Sheffield, England
[2] Univ Med Ctr Groningen, Dept Nephrol, Groningen, Netherlands
[3] Univ Brest, GGB, Inserm, UMR 1078,CHU Brest, F-29200 Brest, France
[4] Ist Ric Farmacol Mario Negri IRCCS, Bergamo, Italy
[5] Univ Autonoma Barcelona, Nephrol Dept, Inherited Kidney Disorders, Fundacio Puigvert,IIB St Pau, Barcelona, Spain
[6] UCLouvain, Clin Univ St Luc, Med Sch, Brussels, Belgium
[7] Univ Sheffield, Fac Hlth, Sch Med & Populat Hlth, Div Clin Med,Acad Nephrol, Sheffield, England
[8] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield Kidney Inst, Sheffield, England
[9] Univ Brest, Inserm, UMR 1227, LBAI,CHU Brest, F-29200 Brest, France
[10] Med Univ Innsbruck, Inst Genet Epidemiol, Dept Genet & Pharmacol, Innsbruck, Austria
[11] Univ Sheffield, Sch Med & Populat Hlth, Div Clin Med, Beech Hill Rd, Sheffield S10 2RX, England
来源
KIDNEY INTERNATIONAL REPORTS | 2024年 / 9卷 / 02期
关键词
ADPKD; artificial intelligence; machine learning; magnetic resonance imaging; total kidney volume; DISEASE; SEGMENTATION; TOLVAPTAN;
D O I
10.1016/j.ekir.2023.10.029
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI)-generated method for routinely measuring total kidney volume (TKV). Methods: An ensemble U -net algorithm was created using the nnUNet approach. The training and internal cross -validation cohort consisted of all 1.5T magnetic resonance imaging (MRI) data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium, which was first manually segmented by a single human operator. As an independent validation cohort, we utilized 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single center. The tool was then implemented for clinical use and its performance analyzed. Results: The training or internal validation cohort was younger (mean age 44.0 vs. 51.5 years) and the female-to-male ratio higher (1.2 vs. 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging class 1, 86%). The median DICE score on the clinical validation data set between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic data set was 56 (+/- 28) minutes, whereas manual corrections of the algorithm output took 8.5 (+/- 9.2) minutes per scan. Conclusion: Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real -world clinical cases demonstrate its suitability for clinical application.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [41] Ultrasound versus magnetic resonance imaging for calculating total kidney volume in patients with ADPKD: a real-world data analysis
    Fernandez, Juan M.
    Hernandez-Socorro, Carmen Rosa
    Robador, Lucas Omar
    Rodriguez-Esparragon, Francisco
    Medina-Garcia, Daniela
    Quevedo-Reina, Juan Carlos
    Lorenzo-Medina, Mercedes
    Oliva-Damaso, Elena
    Perez-Borges, Patricia
    Rodriguez-Perez, Jose C.
    ULTRASOUND JOURNAL, 2025, 17 (01):
  • [42] The role of artificial intelligence measured preoperative kidney volume in predicting kidney function loss in elderly kidney donors: a multicenter cohort study
    Jo, Eun-Ah
    Lee, Juhan
    Moon, Seonggong
    Kim, Jin Sung
    Han, Ahram
    Ha, Jongwon
    Kim, Yong Chul
    Min, Sangil
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (11) : 7169 - 7176
  • [43] An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential
    Fruchter-Goldmeier, Yael
    Kantor, Ben
    Ben-Meir, Assaf
    Wainstock, Tamar
    Erlich, Itay
    Levitas, Eliahu
    Shufaro, Yoel
    Sapir, Onit
    Har-Vardi, Iris
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential
    Yael Fruchter-Goldmeier
    Ben Kantor
    Assaf Ben-Meir
    Tamar Wainstock
    Itay Erlich
    Eliahu Levitas
    Yoel Shufaro
    Onit Sapir
    Iris Har-Vardi
    Scientific Reports, 13
  • [45] AUTOMATED LITERATURE SCREENING USING ARTIFICIAL INTELLIGENCE: A META-ANALYSIS OF DIFFERENT ALGORITHM RESULTS
    Witzmann, A.
    Queiros, L.
    Abogunrin, S.
    VALUE IN HEALTH, 2022, 25 (12) : S14 - S14
  • [46] Automated 2-Dimensional Measurement of Vestibular Schwannoma: Validity and Accuracy of an Artificial Intelligence Algorithm
    Neve, Olaf M.
    Romeijn, Stephan R.
    Chen, Yunjie
    Nagtegaal, Larissa
    Grootjans, Willem
    Jansen, Jeroen C.
    Staring, Marius
    Verbist, Berit M.
    Hensen, Erik F.
    OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2023, 169 (06) : 1582 - 1589
  • [47] Validation of an Automated Artificial Intelligence Algorithm for the Quantification of Major OCT Parameters in Diabetic Macular Edema
    Midena, Edoardo
    Toto, Lisa
    Frizziero, Luisa
    Covello, Giuseppe
    Torresin, Tommaso
    Midena, Giulia
    Danieli, Luca
    Pilotto, Elisabetta
    Figus, Michele
    Mariotti, Cesare
    Lupidi, Marco
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (06)
  • [48] NETWORK RECONFIGURATION ALGORITHM FOR AUTOMATED DISTRIBUTION-SYSTEMS BASED ON ARTIFICIAL-INTELLIGENCE APPROACH
    JUNG, KH
    KIM, H
    KO, Y
    IEEE TRANSACTIONS ON POWER DELIVERY, 1993, 8 (04) : 1933 - 1941
  • [49] Characterization of Volume Doubling Times of Lung Adenocarcinomas With Automated, Artificial Intelligence Volumetric Lesion Segmentation and Tracking
    Cypro, A.
    Babar, H. S.
    Kim, J. H.
    Patel, L.
    Lin, G. Y.
    Cheng, G. Z.
    Hsiao, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [50] Artificial Intelligence Based Method for Automated PET/CT Measurements of Prostate Gland Volume and Choline Uptake
    Borrelli, P.
    Mortensen, M.
    Enqvist, O.
    Ulen, J.
    Poulsen, M. H.
    Tragardh, E.
    Hoilund-Carlsen, P.
    Edenbrandt, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S531 - S532