An Artificial Intelligence Generated Automated Algorithm to Measure Total Kidney Volume in ADPKD

被引:5
|
作者
Taylor, Jonathan [1 ]
Thomas, Richard [1 ]
Metherall, Peter [1 ]
van Gastel, Marieke [2 ]
Cornec-Le Gall, Emilie [3 ]
Caroli, Anna [4 ]
Furlano, Monica [5 ]
Demoulin, Nathalie [6 ]
Devuyst, Olivier [6 ]
Winterbottom, Jean [7 ,8 ]
Torra, Roser [5 ]
Perico, Norberto [4 ]
Le Meur, Yannick [9 ]
Schoenherr, Sebastian [10 ]
Forer, Lukas [10 ]
Gansevoort, Ron T. [2 ]
Simms, Roslyn J. [7 ,8 ,11 ]
Ong, Albert C. M. [7 ,8 ,11 ]
机构
[1] Sheffield Teaching Hosp NHS Fdn Trust, Med Imaging Med Phys, 3DLab, Sheffield, England
[2] Univ Med Ctr Groningen, Dept Nephrol, Groningen, Netherlands
[3] Univ Brest, GGB, Inserm, UMR 1078,CHU Brest, F-29200 Brest, France
[4] Ist Ric Farmacol Mario Negri IRCCS, Bergamo, Italy
[5] Univ Autonoma Barcelona, Nephrol Dept, Inherited Kidney Disorders, Fundacio Puigvert,IIB St Pau, Barcelona, Spain
[6] UCLouvain, Clin Univ St Luc, Med Sch, Brussels, Belgium
[7] Univ Sheffield, Fac Hlth, Sch Med & Populat Hlth, Div Clin Med,Acad Nephrol, Sheffield, England
[8] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield Kidney Inst, Sheffield, England
[9] Univ Brest, Inserm, UMR 1227, LBAI,CHU Brest, F-29200 Brest, France
[10] Med Univ Innsbruck, Inst Genet Epidemiol, Dept Genet & Pharmacol, Innsbruck, Austria
[11] Univ Sheffield, Sch Med & Populat Hlth, Div Clin Med, Beech Hill Rd, Sheffield S10 2RX, England
来源
KIDNEY INTERNATIONAL REPORTS | 2024年 / 9卷 / 02期
关键词
ADPKD; artificial intelligence; machine learning; magnetic resonance imaging; total kidney volume; DISEASE; SEGMENTATION; TOLVAPTAN;
D O I
10.1016/j.ekir.2023.10.029
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI)-generated method for routinely measuring total kidney volume (TKV). Methods: An ensemble U -net algorithm was created using the nnUNet approach. The training and internal cross -validation cohort consisted of all 1.5T magnetic resonance imaging (MRI) data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium, which was first manually segmented by a single human operator. As an independent validation cohort, we utilized 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single center. The tool was then implemented for clinical use and its performance analyzed. Results: The training or internal validation cohort was younger (mean age 44.0 vs. 51.5 years) and the female-to-male ratio higher (1.2 vs. 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging class 1, 86%). The median DICE score on the clinical validation data set between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic data set was 56 (+/- 28) minutes, whereas manual corrections of the algorithm output took 8.5 (+/- 9.2) minutes per scan. Conclusion: Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real -world clinical cases demonstrate its suitability for clinical application.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [21] THE ASSOCIATION OF COMBINED TOTAL KIDNEY AND LIVER VOLUME WITH GASTROINTESTINAL SYMPTOMS AND PAIN IN PATIENTS WITH LATER STAGE ADPKD
    D'Agnolo, Hedwig M. A.
    Casteleijn, Niek F.
    de Fijter, Hans W.
    Messchendorp, Lianne A.
    Peters, Dorien J.
    Peters, Dorien J.
    Salih, Mahdi
    Soonawala, Darius
    Spithoven, Edwin M.
    Visser, Folkert W.
    Wetzels, Jack
    Zietse, Bob
    Gansevoort, Ron T.
    Drenth, Joost P. H.
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2016, 31 : 92 - 92
  • [22] Evaluation of an artificial intelligence–based algorithm for automated localization of craniofacial landmarks
    Friederike Maria Sophie Blum
    Stephan Christian Möhlhenrich
    Stefan Raith
    Tobias Pankert
    Florian Peters
    Michael Wolf
    Frank Hölzle
    Ali Modabber
    Clinical Oral Investigations, 2023, 27 : 2255 - 2265
  • [23] BENEFITS OF USING AUTOMATED ARTIFICIAL INTELLIGENCE OPTIMIZATION ALGORITHM IN RADIATION THERAPY
    Griskevicius, Romualdas
    Astrauskas, Marijus
    Akelaitis, Kestutis
    Markeviciene, Ieva
    Venius, Jonas
    MEDICAL PHYSICS IN THE BALTIC STATES, 2019, : 52 - 57
  • [24] Automated simulation-generated EO/IR image library for artificial intelligence applications
    Packard, Corey D.
    Klein, Mark D.
    Viola, Timothy S.
    Bell, David C.
    Rynes, Peter L.
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXXI, 2020, 11406
  • [25] A rapid high-performance semi-automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease
    Simms, Roslyn J.
    Doshi, Trushali
    Metherall, Peter
    Ryan, Desmond
    Wright, Peter
    Gruel, Nicolas
    van Gastel, Maatje D. A.
    Gansevoort, Ron T.
    Tindale, Wendy
    Ong, Albert C. M.
    EUROPEAN RADIOLOGY, 2019, 29 (08) : 4188 - 4197
  • [26] A rapid high-performance semi-automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease
    Roslyn J. Simms
    Trushali Doshi
    Peter Metherall
    Desmond Ryan
    Peter Wright
    Nicolas Gruel
    Maatje D. A. van Gastel
    Ron T. Gansevoort
    Wendy Tindale
    Albert C. M. Ong
    European Radiology, 2019, 29 : 4188 - 4197
  • [27] Total Kidney Volume Measurements in ADPKD by 3D and Ellipsoid Ultrasound in Comparison with Magnetic Resonance Imaging
    Akbari, Pedram
    Nasri, Fatemah
    Deng, Shirley X.
    Khowaja, Saima
    Lee, Seung H.
    Warnica, William
    Lu, Hua
    Rattansingh, Anand
    Atri, Mostafa
    Khalili, Korosh
    York, Pei
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 17 (06): : 827 - 834
  • [28] The Role of Baseline Total Kidney Volume Growth Rate in Predicting Tolvaptan Efficacy for ADPKD Patients: A Feasibility Study
    Dev, Hreedi
    Hu, Zhongxiu
    Blumenfeld, Jon D.
    Sharbatdaran, Arman
    Kim, Yelynn
    Zhu, Chenglin
    Shimonov, Daniil
    Chevalier, James M.
    Donahue, Stephanie
    Wu, Alan
    Roychoudhury, Arindam
    He, Xinzi
    Prince, Martin R.
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (05)
  • [29] Automated algorithm to measure changes in medial temporal lobe volume in Alzheimer disease
    Kazemifar, Samaneh
    Drozd, John J.
    Rajakumar, Nagalingam
    Borrie, Michael J.
    Bartha, Robert
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 227 : 35 - 46
  • [30] Automated healthcare-associated infection surveillance using an artificial intelligence algorithm
    dos Santos, R. P.
    Silva, D.
    Menezes, A.
    Lukasewicz, S.
    Dalmora, C. H.
    Carvalho, O.
    Giacomazzi, J.
    Golin, N.
    Pozza, R.
    Vaz, T. A.
    INFECTION PREVENTION IN PRACTICE, 2021, 3 (03)