Structure, relaxation behavior and dielectric properties of HfO2 modified Ba (Zr0.2Ti0.8)O3 ceramics synthesized by liquid phase coating method

被引:1
|
作者
Zhang, Chen [1 ]
Li, Haoliang [1 ]
Wang, Chun [1 ]
Zhang, Xing [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Dept Mat Sci & Engn, Zhenjiang 212003, Peoples R China
关键词
Barium zirconate titanate; Liquid phase coating method; Ceramics; Relaxor behavior; Dielectric properties; RELAXOR BEHAVIOR; FERROELECTRIC PROPERTIES; ENERGY-STORAGE; BARIUM; MICROSTRUCTURE; TEMPERATURE; TRANSITION;
D O I
10.1016/j.mseb.2024.117187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The z mol% (z = 0, 0.5, 1, 2, 3, 5) HfO2 doped Ba(Zr0.2Ti0.8)O3 ceramics were synthesized by the liquid phase coating method. The HfO2 doped samples exhibit cubic perovskite structure and a pyrochlore phase is formed in the 5 mol% HfO2 doped BZT ceramic due to the substitution of Hf4+ ions for host B site ions. The HfO2 modified Ba(Zr0.2Ti0.8)O3 ceramics possess uniform grain size distribution and the average grain size increases with the increasing HfO2 amount when z <= 1. After increasing z up to 2, the exaggerated grain growth appears in the BZT based ceramics. The dielectric frequency dispersion for Ba(Zr0.2Ti0.8)O3 based ceramics gets enhanced as the HfO2 concentration increases and the almost complete transition diffuseness induced by composition inhomogeneity can be obtained. A comprehensive performance (high epsilon rRT, low tan delta RT and fine Delta epsilon r/epsilon r) is obtained for the 1 mol% HfO2 modified Ba(Zr0.2Ti0.8)O3 ceramic.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effects of texture on the dielectric properties of Ba(Zr0.2Ti0.8)O3 thin films prepared by pulsed laser deposition
    X.G. Tang
    X.X. Wang
    K.H. Wong
    H.L.W. Chan
    Applied Physics A, 2005, 81 : 1253 - 1256
  • [32] Phase evolution, microstructure and dielectric properties of electrospun Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3
    Amir Mahdi Molavi
    Parvin Alizadeh
    Journal of the Korean Ceramic Society, 2021, 58 : 225 - 235
  • [33] Combined effect of oxygen annealing and La-doping in broadening the phase transition of Ba(Zr0.2Ti0.8)O3 ceramics
    Kumar, R.
    Asokan, K.
    Patnaik, S.
    Birajdar, Balaji
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 737 : 561 - 567
  • [34] Enhanced dielectric and ferroelectric properties of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 multilayered thin films prepared by rf magnetron sputtering
    Wu, J. G.
    Xiao, D. Q.
    Zhu, J. G.
    Zhu, J. L.
    Tan, J. Z.
    Zhang, Q. L.
    APPLIED PHYSICS LETTERS, 2007, 90 (08)
  • [35] Ferroelectric Properties of (1-x)Ba(Zr0.2Ti0.8)O3-xKNbO3 Ceramics
    Photankham, Wattana
    Wattanasarn, Hassakorn
    Hemadhulin, Oraphan
    Singsoog, Kunchit
    Khottummee, Nattee
    Namthaisong, Aschara
    Sansupaen, Sakda
    INTEGRATED FERROELECTRICS, 2021, 214 (01) : 173 - 180
  • [36] Frequency and temperature dependence of tunable dielectric properties of Ba(Zr0.2Ti0.8)O3 thin films grown on (001) MgO
    Zhu, X. H.
    Li, J.
    Zheng, D. N.
    APPLIED PHYSICS LETTERS, 2007, 90 (14)
  • [37] Effect of Zn dopant on the dielectric properties of (Ca0.8Sr0.2Ti0.8Zr0.2)O3 ceramics
    Kim, Hong-Ki
    Kim, Jin Hyeon
    Lee, Seung-Hwan
    Choi, Hyeong Jong
    Lee, Young-Hie
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2016, 17 (07): : 738 - 741
  • [38] Dielectric properties of PVDF/0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 composites
    Pandey, Bablu K.
    Chandra, K. P.
    Kolte, Jayant
    Kulkarni, A. R.
    Jayaswal, S. K.
    Prasad, K.
    2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [39] Domain structures and piezoelectric properties of Pb(Zr0.2Ti0.8)O3 nanocapacitors
    Han, Hee
    Park, Yong Jun
    Baik, Sunggi
    Lee, Woo
    Alexe, Marin
    Hesse, Dietrich
    Goesele, Ulrich
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
  • [40] Oxygen vacancies-related high-temperature dielectric relaxation and pyroelectric energy harvesting in lead-free Ba(Zr0.2Ti0.8)O3 ceramics
    Peng-Zu Ge
    Tian-Fu Zhang
    Zhen-Xun Tang
    Xin-Gui Tang
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 3024 - 3033