Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms

被引:40
|
作者
Wilberforce, Tabbi [1 ]
Rezk, Hegazy [2 ]
Olabi, A. G. [3 ]
Epelle, Emmanuel I. [5 ]
Abdelkareem, Mohammad Ali [3 ,4 ]
机构
[1] Aston Univ, Sch Engn & Appl Sci, Mech Engn & Design, Birmingham B4 7ET, England
[2] Prince Sattam bin Abdulaziz Univ, Coll Engn Wadi Alddawasir, Dept Elect Engn, Al Kharj, Saudi Arabia
[3] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[4] Minia Univ, Chem Engn Dept, Elminia, Egypt
[5] Univ Edinburgh, Inst Mat & Proc IMP, Sch Engn, Kings Bldg, Edinburgh EH9 3FB, Scotland
关键词
Fuel cell; PEMFC; Parameter estimation; Modelling; Optimization; Meta-heuristic algorithms; OPTIMIZATION; EXTRACTION;
D O I
10.1016/j.energy.2022.125530
中图分类号
O414.1 [热力学];
学科分类号
摘要
One of the primary issues in the modelling of fuel cell is the determination of specific boundary conditions often deduced from the manufacturer of the fuel cell. Realistically, not all data is available from the manufacturer's data sheet; hence, to improve the accuracy as well as predict the performance of the cell, all these information need to be determined. This investigation however advanced the concept of using five different algorithms (Grey Wolf Optimization(GWO), Particle Swarm Optimization(PSO), Slime Mould Algorithm(SMA), Harris Hawk Optimiser (HHO), artificial ecosystem-based algorithm(AEO)) to ascertaining seven (xi 1, xi 2, xi 3, xi 4,R,B,lambda) unknow parameters that affect the mathematical modelling of the cell. The unknown parameters were used as the modelling variables. A minimum fitness function implied a good correlation between the measured/experimental data and the predicted/modelled data. The study had to rank the performance of the algorithms from the best value to the worse value, average and standard deviation. The artificial ecosystem-based algorithm showed the best results compared to the PSO, SMA, GWO and HHO algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Parameter estimation of PEM fuel cells using metaheuristic algorithms
    Li, Xuebin
    Jin, Zhao
    Yu, Daiwei
    Zhang, Jun
    Zhang, Wenjin
    MEASUREMENT, 2024, 237
  • [2] Parametric sensitivity analysis of PEM fuel cell electrochemical Model
    Srinivasulu, G. Naga
    Subrahmanyam, T.
    Rao, V. Dharma
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) : 14838 - 14844
  • [3] Design Parametric Analysis of PEM Fuel Cell and Hybrid Systems
    You, Byung June
    Kim, Tong Seop
    Lee, Young Duk
    Ahn, Kook Young
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2007, 31 (05) : 448 - 456
  • [4] Parametric study and estimation in CFD-based PEM fuel cell models
    Jain, Parag
    Biegler, Lorenz T.
    Jhon, Myung S.
    AICHE JOURNAL, 2008, 54 (08) : 2089 - 2100
  • [5] A parametric study of PEM fuel cell performances
    Wang, L
    Husar, A
    Zhou, TH
    Liu, HT
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (11) : 1263 - 1272
  • [6] Parameter estimation of a PEM fuel cell
    Suares, GE
    Kosanovich, KA
    DYNAMICS & CONTROL OF PROCESS SYSTEMS 1998, VOLUMES 1 AND 2, 1999, : 241 - 246
  • [7] Parametric Study of Operation and Performance of a PEM Fuel Cell Using Numerical Method
    Seddiq, Mehdi
    Khaleghi, Hassan
    Mirzaei, Masaud
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2008, 27 (02): : 1 - 12
  • [8] Parametric study of the porous cathode in the PEM fuel cell
    Zhang, Zhuqian
    Jia, Li
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2009, 33 (01) : 52 - 61
  • [9] Parametric Analysis of a High Temperature PEM Fuel Cell Based Microcogeneration System
    Nomnqa, Myalelo
    Ikhu-Omoregbe, Daniel
    Rabiu, Ademola
    INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2016, 2016
  • [10] Parametric study of the porous cathode in the PEM fuel cell
    Zhang, Zhuqian
    Jia, Li
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 313 - 321