Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms

被引:40
|
作者
Wilberforce, Tabbi [1 ]
Rezk, Hegazy [2 ]
Olabi, A. G. [3 ]
Epelle, Emmanuel I. [5 ]
Abdelkareem, Mohammad Ali [3 ,4 ]
机构
[1] Aston Univ, Sch Engn & Appl Sci, Mech Engn & Design, Birmingham B4 7ET, England
[2] Prince Sattam bin Abdulaziz Univ, Coll Engn Wadi Alddawasir, Dept Elect Engn, Al Kharj, Saudi Arabia
[3] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[4] Minia Univ, Chem Engn Dept, Elminia, Egypt
[5] Univ Edinburgh, Inst Mat & Proc IMP, Sch Engn, Kings Bldg, Edinburgh EH9 3FB, Scotland
关键词
Fuel cell; PEMFC; Parameter estimation; Modelling; Optimization; Meta-heuristic algorithms; OPTIMIZATION; EXTRACTION;
D O I
10.1016/j.energy.2022.125530
中图分类号
O414.1 [热力学];
学科分类号
摘要
One of the primary issues in the modelling of fuel cell is the determination of specific boundary conditions often deduced from the manufacturer of the fuel cell. Realistically, not all data is available from the manufacturer's data sheet; hence, to improve the accuracy as well as predict the performance of the cell, all these information need to be determined. This investigation however advanced the concept of using five different algorithms (Grey Wolf Optimization(GWO), Particle Swarm Optimization(PSO), Slime Mould Algorithm(SMA), Harris Hawk Optimiser (HHO), artificial ecosystem-based algorithm(AEO)) to ascertaining seven (xi 1, xi 2, xi 3, xi 4,R,B,lambda) unknow parameters that affect the mathematical modelling of the cell. The unknown parameters were used as the modelling variables. A minimum fitness function implied a good correlation between the measured/experimental data and the predicted/modelled data. The study had to rank the performance of the algorithms from the best value to the worse value, average and standard deviation. The artificial ecosystem-based algorithm showed the best results compared to the PSO, SMA, GWO and HHO algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
    Li Wei
    Zhu Xin-jian
    Mo Zhi-jun
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2007, 14 (05): : 690 - 695
  • [42] Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
    Wei Li
    Xin-jian Zhu
    Zhi-jun Mo
    Journal of Central South University of Technology, 2007, 14 : 690 - 695
  • [43] Fault Estimation using a Takagi-Sugeno Interval Observer: Application to a PEM Fuel Cell
    Martinez Garcia, C.
    Puig, V
    Astorga Zaragoza, C.
    ICINCO: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS - VOL 1, 2017, : 613 - 620
  • [44] Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
    李炜
    朱新坚
    莫志军
    JournalofCentralSouthUniversityofTechnology, 2007, (05) : 690 - 695
  • [45] Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer
    Rezk, Hegazy
    Ferahtia, Seydali
    Djeroui, Ali
    Chouder, Aissa
    Houari, Azeddine
    Machmoum, Mohamed
    Abdelkareem, Mohammad Ali
    ENERGY, 2022, 239
  • [46] Control of PEM fuel cell power system using sliding mode and super-twisting algorithms
    Derbeli, Mohamed
    Farhat, Maissa
    Barambones, Oscar
    Sbita, Lassaad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (13) : 8833 - 8844
  • [47] A review: Exergy analysis of PEM and PEM fuel cell based CHP systems
    Ozgur, Tayfun
    Yakaryilmaz, Ali Cem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (38) : 17993 - 18000
  • [48] PEM fuel cell modeling using differential evolution
    Chakraborty, Uday K.
    Abbott, Travis E.
    Das, Sajal K.
    ENERGY, 2012, 40 (01) : 387 - 399
  • [49] Operating line analysis of fuel processors for PEM fuel cell systems
    Feitelberg, AS
    Rohr, DE
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (11) : 1251 - 1257
  • [50] Review and analysis of PEM fuel cell design and manufacturing
    Mehta, V
    Cooper, JS
    JOURNAL OF POWER SOURCES, 2003, 114 (01) : 32 - 53