Hourly PM2.5 Concentration Prediction Based on Empirical Mode Decomposition and Geographically Weighted Neural Network

被引:0
|
作者
Chen, Yan [1 ]
Hu, Chunchun [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
关键词
PM2.5 concentration prediction; empirical mode decomposition; minimal-redundancy-maximal-relevance; geographically weighted neural network; SUPPORT VECTOR MACHINE; FEATURE-SELECTION; AIR-POLLUTION; VEHICLES;
D O I
10.3390/ijgi13030079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time series data observed from stations, and it is difficult to avoid the redundancy between features during feature selection. To further improve the accuracy, this study proposes a hybrid model based on empirical mode decomposition (EMD), minimal-redundancy-maximal-relevance (mRMR), and geographically weighted neural network (GWNN) for hourly PM2.5 concentration prediction, named EMD-mRMR-GWNN. Firstly, the original PM2.5 concentration sequence with distinct nonlinearity and non-stationarity is decomposed into multiple intrinsic mode functions (IMFs) and a residual component using EMD. IMFs are further classified and reconstructed into high-frequency and low-frequency components using the one-sample t-test. Secondly, the optimal feature subset is selected from high-frequency and low-frequency components with mRMR for the prediction model, thus holding the correlation between features and the target variable and reducing the redundancy among features. Thirdly, the residual component is predicted with the simple moving average (SMA) due to its strong trend and autocorrelation, and GWNN is used to predict the high-frequency and low-frequency components. The final prediction of the PM2.5 concentration value is calculated by an artificial neural network (ANN) composed of the predictive values of each component. PM2.5 concentration prediction experiments in three representational cities, such as Beijing, Wuhan, and Kunming were carried out. The proposed model achieved high accuracy with a coefficient of determination greater than 0.92 in forecasting PM2.5 concentration for the next 1 h. We compared this model with four baseline models in forecasting PM2.5 concentration for the next few hours and found it performed the best in PM2.5 concentration prediction. The experimental results indicated the proposed model can improve prediction accuracy.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hourly prediction of PM2.5 concentration in Beijing based on Bi-LSTM neural network
    Mingmin Zhang
    Dihua Wu
    Rongna Xue
    Multimedia Tools and Applications, 2021, 80 : 24455 - 24468
  • [2] Hourly prediction of PM2.5 concentration in Beijing based on Bi-LSTM neural network
    Zhang, Mingmin
    Wu, Dihua
    Xue, Rongna
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24455 - 24468
  • [3] PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition
    Huang, Guoyan
    Li, Xinyi
    Zhang, Bing
    Ren, Jiadong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
  • [4] PM2.5 Forecast of Beijing Based on Ensemble Empirical Mode Decomposition and BP Neural Network
    Ren X.
    Zou S.
    Tang X.
    Wei J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (04): : 615 - 625
  • [5] Prediction of Urban PM2.5 Concentration Based on Wavelet Neural Network
    Zhang, Shan
    Li, Xiaoli
    Li, Yang
    Mei, Jianxiang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 5514 - 5519
  • [6] Prediction of PM2.5 Concentration Based on Recurrent Fuzzy Neural Network
    Zhou, Shanshan
    Li, Wenjing
    Qiao, Junfei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 3920 - 3924
  • [7] PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
    Li Zhang
    Jinlan Liu
    Yuhan Feng
    Peng Wu
    Pengkun He
    Environmental Science and Pollution Research, 2023, 30 : 75104 - 75115
  • [8] PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
    Zhang, Li
    Liu, Jinlan
    Feng, Yuhan
    Wu, Peng
    He, Pengkun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (30) : 75104 - 75115
  • [9] Pm2.5 Prediction Based On Neural Network
    Wang, Zhencheng
    Long, Zou
    2018 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2018), 2018, : 44 - 47
  • [10] PM2.5 hourly concentration prediction based on graph capsule networks
    Wang, Suhua
    Huang, Zhen
    Ji, Hongjie
    Zhao, Huinan
    Zhou, Guoyan
    Sun, Xiaoxin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01): : 509 - 529