DESCRIPTION OF RANDOM LEVEL SETS BY POLYNOMIAL CHAOS EXPANSIONS

被引:0
|
作者
Bambach, Markus [1 ]
Gerster, Stephan [2 ]
Herty, Michael [3 ]
Sikstel, Aleksey [4 ]
机构
[1] Swiss Fed Inst Technol, Adv Mfg Lab, CH-8005 Zurich, Switzerland
[2] Johannes Gutenberg Univ Mainz, Inst Math, D-55122 Mainz, Germany
[3] RWTH Aachen Univ Technol, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
[4] Tech Univ Darmstadt, Dept Math, D-64289 Darmstadt, Germany
关键词
Level sets; uncertainty quantification; Hamilton-Jacobi equations; hyperbolic conser-vation laws; stochastic Galerkin; finite-volume method; HAMILTON-JACOBI EQUATIONS; STOCHASTIC GALERKIN METHOD; CONSERVATION-LAWS; VISCOSITY SOLUTIONS; SYSTEMS; PROPAGATION; IMAGES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel approach to determine the evolution of level sets under uncertainties in their velocity fields. This leads to a stochastic description of level sets. To compute the quantiles of random level sets, we use the stochastic Galerkin method for a hyperbolic reformulation of the equations for the propagation of level sets. A novel intrusive Galerkin formulation is presented and proven to be hyperbolic. It induces a corresponding finite-volume scheme that is specifically tailored to uncertain velocities.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 50 条
  • [31] Generalized polynomial chaos and random oscillators
    Lucor, D
    Su, CH
    Karniadakis, GE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (03) : 571 - 596
  • [32] Fourier Expansions with Polynomial Terms for Random Processes
    Zhang, Zhihua
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [33] Identification of random shapes from images through polynomial chaos expansion of random level set functions
    Stefanou, G.
    Nouy, A.
    Clement, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (02) : 127 - 155
  • [34] Convergence of polynomial level sets
    Ferrera, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (12) : 4757 - 4773
  • [35] A GENERAL FRAMEWORK FOR ENHANCING SPARSITY OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
    Yang, Xiu
    Wan, Xiaoliang
    Lin, Lin
    Lei, Huan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2019, 9 (03) : 221 - 243
  • [36] Interval Estimation for Uncertain Systems via Polynomial Chaos Expansions
    Han, Weixin
    Wang, Zhenhua
    Shen, Yi
    Xu, Bin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (01) : 468 - 475
  • [37] On Stability of Stochastic Linear Systems via Polynomial Chaos Expansions
    Lucia, Sergio
    Paulson, Joel A.
    Findeisen, Rolf
    Braatz, Richard D.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5089 - 5094
  • [38] The method of uncertainty quantification and minimization using polynomial chaos expansions
    Sheen, David A.
    Wang, Hai
    COMBUSTION AND FLAME, 2011, 158 (12) : 2358 - 2374
  • [39] Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
    Lu, Fei
    Morzfeld, Matthias
    Tu, Xuemin
    Chorin, Alexandre J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 138 - 147
  • [40] Ship Robust Design Optimization Based on Polynomial Chaos Expansions
    Wei, Xiao
    Chang, Haichao
    Feng, Baiwei
    Liu, Zuyuan
    JOURNAL OF SHIP PRODUCTION AND DESIGN, 2020, 36 (03): : 213 - 225