DESCRIPTION OF RANDOM LEVEL SETS BY POLYNOMIAL CHAOS EXPANSIONS

被引:0
|
作者
Bambach, Markus [1 ]
Gerster, Stephan [2 ]
Herty, Michael [3 ]
Sikstel, Aleksey [4 ]
机构
[1] Swiss Fed Inst Technol, Adv Mfg Lab, CH-8005 Zurich, Switzerland
[2] Johannes Gutenberg Univ Mainz, Inst Math, D-55122 Mainz, Germany
[3] RWTH Aachen Univ Technol, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
[4] Tech Univ Darmstadt, Dept Math, D-64289 Darmstadt, Germany
关键词
Level sets; uncertainty quantification; Hamilton-Jacobi equations; hyperbolic conser-vation laws; stochastic Galerkin; finite-volume method; HAMILTON-JACOBI EQUATIONS; STOCHASTIC GALERKIN METHOD; CONSERVATION-LAWS; VISCOSITY SOLUTIONS; SYSTEMS; PROPAGATION; IMAGES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel approach to determine the evolution of level sets under uncertainties in their velocity fields. This leads to a stochastic description of level sets. To compute the quantiles of random level sets, we use the stochastic Galerkin method for a hyperbolic reformulation of the equations for the propagation of level sets. A novel intrusive Galerkin formulation is presented and proven to be hyperbolic. It induces a corresponding finite-volume scheme that is specifically tailored to uncertain velocities.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 50 条
  • [21] Physics-informed polynomial chaos expansions
    Novak, Lukas
    Sharma, Himanshu
    Shields, Michael D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 506
  • [22] Conformally mapped polynomial chaos expansions for Maxwell's source problem with random input data
    Georg, Niklas
    Roemer, Ulrich
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2020, 33 (06)
  • [23] Reliability analysis of structures using polynomial chaos expansions
    Zhang M.
    Wang E.
    Liu Y.
    Qi W.
    Wang D.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2022, 62 (08): : 1314 - 1320
  • [24] STOCHASTIC POLYNOMIAL CHAOS EXPANSIONS TO EMULATE STOCHASTIC SIMULATORS
    Zhu, X.
    Sudret, B.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2023, 13 (02) : 31 - 52
  • [25] Surrogate modeling based on resampled polynomial chaos expansions
    Liu, Zicheng
    Lesselier, Dominique
    Sudret, Bruno
    Wiart, Joe
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 202 (202)
  • [26] Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
    Luethen, Nora
    Marelli, Stefano
    Sudret, Bruno
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 593 - 649
  • [27] Sequential Design of Experiment for Sparse Polynomial Chaos Expansions
    Fajraoui, Noura
    Marelli, Stefano
    Sudret, Bruno
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 1085 - 1109
  • [28] Global sensitivity analysis using polynomial chaos expansions
    Sudret, Bruno
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2008, 93 (07) : 964 - 979
  • [29] Some greedy algorithms for sparse polynomial chaos expansions
    Baptista, Ricardo
    Stolbunov, Valentin
    Nair, Prasanth B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 : 303 - 325
  • [30] Polynomial chaos for simulating random volatilities
    Pulch, Roland
    van Emmerich, Cathrin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (02) : 245 - 255