DESCRIPTION OF RANDOM LEVEL SETS BY POLYNOMIAL CHAOS EXPANSIONS

被引:0
|
作者
Bambach, Markus [1 ]
Gerster, Stephan [2 ]
Herty, Michael [3 ]
Sikstel, Aleksey [4 ]
机构
[1] Swiss Fed Inst Technol, Adv Mfg Lab, CH-8005 Zurich, Switzerland
[2] Johannes Gutenberg Univ Mainz, Inst Math, D-55122 Mainz, Germany
[3] RWTH Aachen Univ Technol, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
[4] Tech Univ Darmstadt, Dept Math, D-64289 Darmstadt, Germany
关键词
Level sets; uncertainty quantification; Hamilton-Jacobi equations; hyperbolic conser-vation laws; stochastic Galerkin; finite-volume method; HAMILTON-JACOBI EQUATIONS; STOCHASTIC GALERKIN METHOD; CONSERVATION-LAWS; VISCOSITY SOLUTIONS; SYSTEMS; PROPAGATION; IMAGES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel approach to determine the evolution of level sets under uncertainties in their velocity fields. This leads to a stochastic description of level sets. To compute the quantiles of random level sets, we use the stochastic Galerkin method for a hyperbolic reformulation of the equations for the propagation of level sets. A novel intrusive Galerkin formulation is presented and proven to be hyperbolic. It induces a corresponding finite-volume scheme that is specifically tailored to uncertain velocities.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 50 条
  • [1] POLYNOMIAL CHAOS EXPANSIONS FOR STIFF RANDOM ODEs
    Shi, Wenjie
    Tartakovsky, Daniel M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1021 - A1046
  • [2] Polynomial chaos expansions for dependent random variables
    Jakeman, John D.
    Franzelin, Fabian
    Narayan, Akil
    Eldred, Michael
    Plfueger, Dirk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 351 : 643 - 666
  • [3] Generalized polynomial chaos expansions for the random fractional Bateman equations
    Jornet, Marc
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 479
  • [4] Polynomial chaos expansions for optimal control of nonlinear random oscillators
    Peng, Yong-Bo
    Ghanem, Roger
    Li, Jie
    JOURNAL OF SOUND AND VIBRATION, 2010, 329 (18) : 3660 - 3678
  • [5] PARAMETRIZATION OF RANDOM VECTORS IN POLYNOMIAL CHAOS EXPANSIONS VIA OPTIMAL TRANSPORTATION
    Stavropoulou, Faidra
    Mueller, Johannes
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : A2535 - A2557
  • [6] Application of Conditional Random Fields and Sparse Polynomial Chaos Expansions to Geotechnical Problems
    Schobi, Roland
    Sudret, Bruno
    GEOTECHNICAL SAFETY AND RISK V, 2015, : 445 - 450
  • [7] Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration
    Li, R
    Ghanem, R
    PROBABILISTIC ENGINEERING MECHANICS, 1998, 13 (02) : 125 - 136
  • [8] GENERALIZED POLYNOMIAL CHAOS EXPANSIONS WITH WEIGHTS
    Obermaier, Josef
    Stavropoulou, Faidra
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (01) : 30 - 45
  • [9] Computing Invariant Sets of Random Differential Equations Using Polynomial Chaos
    Breden, Maxime
    Kuehn, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01): : 577 - 618
  • [10] ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
    Ernst, Oliver G.
    Mugler, Antje
    Starkloff, Hans-Joerg
    Ullmann, Elisabeth
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2012, 46 (02) : 317 - 339