Machine learning for survival analysis in cancer research: A comparative study

被引:4
|
作者
Tizi, Wafaa [1 ]
Berrado, Abdelaziz [1 ]
机构
[1] Mohammed V Univ Rabat, Ecole Mohammadia Ingenieurs, Equipe AMIPS, Ave Ibn Sina,BP765, Rabat, Morocco
关键词
Cancer survival prediction; Machine learning; Survival analysis; Cancer datasets; Patient features; BREAST-CANCER; RECURRENCE; PREDICTION;
D O I
10.1016/j.sciaf.2023.e01880
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overview: Survival analysis is at the basis of every study in the field of cancer research. As every endeavor in this field aims primarily and eventually to improve patients' survival time or reduce the potential for recurrence. This article presents a summary of some cancer survival analysis techniques and an up-to-date overview of different implementations of Machine Learning in this area of research. This paper also presents an empirical comparison of selected statistical and Machine Learning approaches on different types of cancer medical datasets. Methods: In this paper we explore a selection of recent articles that: review the use of Machine Learning in cancer research and/or benchmark the different Machine Learning techniques used in cancer survival analysis. This search resulted in 12 papers that were selected following certain criteria. Our aim is to assess the importance of the use of Machine Learning for survival analysis in cancer research, compared to the statistical methods, and how different Machine Learning techniques may perform in different settings in the context of cancer survival analysis. The techniques were selected based on their popularity. Cox Proportional Hazards with Ridge penalty, Random Survival Forests, Gradient Boosting for Survival Analysis with a CoxPh loss function, linear and kernel Support Vector Machines were applied to 10 different cancer survival datasets. The mean Concordance Index and standard deviation were used to compare the performances of these techniques and the results of these implementations were summarized and analyzed for noticeable patterns or trends. Kaplan-Meier plots were used for the non-parametric survival analysis of the different datasets. Results: Cox Proportional Hazards delivers comparable results with Machine Learning techniques thanks to the Ridge penalty and the different methods for dealing with tied events but fails to produce results in higher dimensional datasets. All techniques benchmarked in the study had comparable performances. The use of prognostic tools when there is a mismatch between the patients and the populations used to train the models may not be advisable since each dataset provides a differently shaped survival curve even when presenting a similar cancer type.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Prediction of Breast Cancer, Comparative Review of Machine Learning Techniques, and Their Analysis
    Fatima, Noreen
    Liu, Li
    Hong, Sha
    Ahmed, Haroon
    IEEE ACCESS, 2020, 8 : 150360 - 150376
  • [32] Comparative Study of Machine Learning Algorithms using a Breast Cancer Dataset
    El-Shair, Zaid A.
    Sanchez-Perez, Luis A.
    Rawashdeh, Samir A.
    2020 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2020, : 500 - 508
  • [33] Ensemble Machine Learning for Enhanced Breast Cancer Prediction: A Comparative Study
    Rahman, Mijanur
    Kobir, Khandoker Humayoun
    Akther, Sanjana
    Kallol, Abul Hasnat
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 932 - 941
  • [34] Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques
    Islam M.M.
    Haque M.R.
    Iqbal H.
    Hasan M.M.
    Hasan M.
    Kabir M.N.
    SN Computer Science, 2020, 1 (5)
  • [35] A Comparative Study of Machine Learning Algorithms for Use in Breast Cancer Studies
    Easttom, Chuck
    Thapa, Sudip
    Lawson, Justin
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 412 - 416
  • [36] Comparative Study of Machine Learning Algorithms for Breast Cancer Detection and Diagnosis
    Bazazeh, Dana
    Shubair, Raed
    2016 5TH INTERNATIONAL CONFERENCE ON ELECTRONIC DEVICES, SYSTEMS AND APPLICATIONS (ICEDSA), 2016,
  • [37] Comparative Study of Machine Learning Algorithms in Breast Cancer Prognosis and Prediction
    Ithawar, Majid
    Aslam, Naeem
    Mahboob, Rao Muhammad Mahtab
    Mirza, Mueed Ahmed
    Jahangir, Hassan
    Mughal, Muhammad Awais
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (08): : 125 - +
  • [38] Machine Learning Explainability in Breast Cancer Survival
    Jansen, Tom
    Geleijnse, Gijs
    Van Maaren, Marissa
    Hendriks, Mathijs P.
    Ten Teije, Annette
    Moncada-Torres, Arturo
    DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 : 307 - 311
  • [39] A Comparative Analysis Study of Machine Learning Algorithms in the Quantitative Analysis of LIBS Steel
    Zheng, Ji-Shi
    Hou, Wei-Yu
    Zhao, Zhao-Lin
    Yang, Jia-Cheng
    Ye, Hong-Ji
    Ren, Xiang-Xu
    Kong, Ling-Hua
    Journal of Network Intelligence, 2024, 9 (01): : 313 - 328
  • [40] MLsurvival: an automated machine learning tool for survival analysis of cancer patients.
    Zhou, Wei
    He, Ji
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)