Machine learning for survival analysis in cancer research: A comparative study

被引:4
|
作者
Tizi, Wafaa [1 ]
Berrado, Abdelaziz [1 ]
机构
[1] Mohammed V Univ Rabat, Ecole Mohammadia Ingenieurs, Equipe AMIPS, Ave Ibn Sina,BP765, Rabat, Morocco
关键词
Cancer survival prediction; Machine learning; Survival analysis; Cancer datasets; Patient features; BREAST-CANCER; RECURRENCE; PREDICTION;
D O I
10.1016/j.sciaf.2023.e01880
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overview: Survival analysis is at the basis of every study in the field of cancer research. As every endeavor in this field aims primarily and eventually to improve patients' survival time or reduce the potential for recurrence. This article presents a summary of some cancer survival analysis techniques and an up-to-date overview of different implementations of Machine Learning in this area of research. This paper also presents an empirical comparison of selected statistical and Machine Learning approaches on different types of cancer medical datasets. Methods: In this paper we explore a selection of recent articles that: review the use of Machine Learning in cancer research and/or benchmark the different Machine Learning techniques used in cancer survival analysis. This search resulted in 12 papers that were selected following certain criteria. Our aim is to assess the importance of the use of Machine Learning for survival analysis in cancer research, compared to the statistical methods, and how different Machine Learning techniques may perform in different settings in the context of cancer survival analysis. The techniques were selected based on their popularity. Cox Proportional Hazards with Ridge penalty, Random Survival Forests, Gradient Boosting for Survival Analysis with a CoxPh loss function, linear and kernel Support Vector Machines were applied to 10 different cancer survival datasets. The mean Concordance Index and standard deviation were used to compare the performances of these techniques and the results of these implementations were summarized and analyzed for noticeable patterns or trends. Kaplan-Meier plots were used for the non-parametric survival analysis of the different datasets. Results: Cox Proportional Hazards delivers comparable results with Machine Learning techniques thanks to the Ridge penalty and the different methods for dealing with tied events but fails to produce results in higher dimensional datasets. All techniques benchmarked in the study had comparable performances. The use of prognostic tools when there is a mismatch between the patients and the populations used to train the models may not be advisable since each dataset provides a differently shaped survival curve even when presenting a similar cancer type.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Survival Analysis of Thyroid Cancer Patients Using Machine Learning Algorithms
    Alhashmi, Saadat M.
    Polash, M. D. Shohidul Islam
    Haque, Aminul
    Rabbe, Fazley
    Hossen, Shazzad
    Faruqui, Nuruzzaman
    Hashem, Ibrahim Abaker Targio
    Fathima Abubacker, Nirase
    IEEE ACCESS, 2024, 12 : 61978 - 61990
  • [22] Survival analysis of breast cancer patients using machine learning models
    Evangeline, I. Keren
    Kirubha, S. P. Angeline
    Precious, J. Glory
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 30909 - 30928
  • [23] Survival analysis of breast cancer patients using machine learning models
    Keren Evangeline I.
    S. P. Angeline Kirubha
    J. Glory Precious
    Multimedia Tools and Applications, 2023, 82 : 30909 - 30928
  • [24] Comparative Study of Machine Learning Algorithms for Movie Sentiment Analysis
    Arfaoui, Nouha
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2023, 18 (01): : 25 - 38
  • [25] Comparative study on sentimental analysis using machine learning techniques
    Enduri, Murali Krishna
    Sangi, Abdur Rashid
    Anamalamudi, Satish
    Manikanta, R. Chandu Badrinath
    Reddy, K. Yogeshvar
    Yeswanth, P. Lovely
    Reddy, S. Kiran Sai
    Karthikeya, Asish
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (01) : 207 - 215
  • [26] Comparative Study on Machine Learning for Urban Building Energy Analysis
    Wei, Lai
    Tian, Wei
    Silva, Elisabete A.
    Choudhary, Ruchi
    Meng, QingXin
    Yang, Song
    9TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING (ISHVAC) JOINT WITH THE 3RD INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT (COBEE), 2015, 121 : 285 - 292
  • [27] Comparative Study of Machine Learning Algorithms for Twitter Sentiment Analysis
    Indulkar, Yash
    Patil, Abhijit
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 295 - 299
  • [28] Machine Learning for Survival Analysis: A Survey
    Wang, Ping
    Li, Yan
    Reddy, Chandan K.
    ACM COMPUTING SURVEYS, 2019, 51 (06)
  • [29] Comparative analysis of breast cancer detection using machine learning and biosensors
    Amethiya, Yash
    Pipariya, Prince
    Patel, Shlok
    Shah, Manan
    INTELLIGENT MEDICINE, 2022, 2 (02): : 69 - 81
  • [30] Comparative Performance Analysis of Machine Learning Classifiers on Ovarian Cancer Dataset
    Bhattacharjee, Sharmistha
    Singh, Yumnam Jayanta
    Ray, Dipankar
    2017 THIRD IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2017, : 213 - 218