Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator

被引:4
|
作者
Goncalves, Helena F. [1 ]
Haroske, Dorothee D. [1 ]
Skrzypczak, Leszek [2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
关键词
Besov-type space; Triebel-Lizorkin-type spaces; Smoothness Morrey spaces on domains; Limiting embeddings; Extension operator; SMOOTHNESS MORREY SPACES; COMPLEX INTERPOLATION; MAXIMAL FUNCTIONS; LOCAL MEANS; DISTRIBUTIONS; LIPSCHITZ;
D O I
10.1007/s10231-023-01327-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces, id(tau) : B-p1,q1(s1,tau 1)(Omega) (sic) B-p2,q2(s2,tau 2)(Omega) and id(tau) : F-p1,q1(s1,tau 1)(Omega) (sic) F-p2,q2(s2,tau 2)(Omega), where Omega subset of R-d is a bounded domain, obtaining necessary and sufficient conditions for the continuity of id(tau). This can also be seen as the continuation of our previous studies of compactness of the embeddings in the non-limiting case. Moreover, we also construct Rychkov's linear, bounded universal extension operator for these spaces.
引用
收藏
页码:2481 / 2516
页数:36
相关论文
共 50 条
  • [41] EMBEDDINGS PROPERTIES ON HERZ-TYPE BESOV AND TRIEBEL-LIZORKIN SPACES
    Drihem, Douadi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02): : 439 - 460
  • [42] Boundedness of Weighted Hardy Operator and Its Adjoint on Triebel-Lizorkin-Type Spaces
    Tang, Canqin
    Zhou, Ruohong
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [43] Sharp embeddings of Besov-type spaces
    Gurka, Petr
    Opic, Bohumir
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 235 - 269
  • [44] A measure characterization of embedding and extension domains for Sobolev, Triebel-Lizorkin, and Besov spaces on spaces of homogeneous type
    Alvarado, Ryan
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
  • [45] Dual Properties of Triebel-Lizorkin-Type Spaces and their Applications
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (01): : 29 - 58
  • [46] Extension and Embedding of Triebel-Lizorkin-Type Spaces Built on Ball Quasi-Banach Spaces
    Zeng, Zongze
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [47] JAWERTH-FRANKE EMBEDDINGS OF HERZ-TYPE BESOV AND TRIEBEL-LIZORKIN SPACES
    Drihem, Douadi
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (02) : 207 - 226
  • [48] Some Intrinsic Characterizations of Besov–Triebel–Lizorkin–Morrey–Type Spaces on Lipschitz Domains
    Liding Yao
    Journal of Fourier Analysis and Applications, 2023, 29
  • [49] CHARACTERIZATIONS OF VARIABLE TRIEBEL-LIZORKIN-TYPE SPACES VIA BALL AVERAGES
    Zhuo, Ciqiang
    Chang, Der-Chen
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 19 - 40
  • [50] Non-smooth atomic decomposition of Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)