Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator

被引:4
|
作者
Goncalves, Helena F. [1 ]
Haroske, Dorothee D. [1 ]
Skrzypczak, Leszek [2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
关键词
Besov-type space; Triebel-Lizorkin-type spaces; Smoothness Morrey spaces on domains; Limiting embeddings; Extension operator; SMOOTHNESS MORREY SPACES; COMPLEX INTERPOLATION; MAXIMAL FUNCTIONS; LOCAL MEANS; DISTRIBUTIONS; LIPSCHITZ;
D O I
10.1007/s10231-023-01327-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces, id(tau) : B-p1,q1(s1,tau 1)(Omega) (sic) B-p2,q2(s2,tau 2)(Omega) and id(tau) : F-p1,q1(s1,tau 1)(Omega) (sic) F-p2,q2(s2,tau 2)(Omega), where Omega subset of R-d is a bounded domain, obtaining necessary and sufficient conditions for the continuity of id(tau). This can also be seen as the continuation of our previous studies of compactness of the embeddings in the non-limiting case. Moreover, we also construct Rychkov's linear, bounded universal extension operator for these spaces.
引用
收藏
页码:2481 / 2516
页数:36
相关论文
共 50 条
  • [21] New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 451 - 480
  • [22] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces via Averages on Balls
    Zhuo, Ciqiang
    Sickel, Winfried
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (03): : 655 - 672
  • [23] CHARACTERIZATIONS OF SLICE BESOV-TYPE AND SLICE TRIEBEL-LIZORKIN-TYPE SPACES AND APPLICATIONS
    Lu, Yuan
    Zhou, Jiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 643 - 684
  • [24] Localization property of generalized Besov-type spaces, Triebel-Lizorkin-type spaces and their associated multiplier spaces
    Djeriou, Aissa
    FILOMAT, 2024, 38 (07) : 2261 - 2275
  • [25] Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means
    Yang, Dachun
    Yuan, Wen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) : 3805 - 3820
  • [26] Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces
    Dachun Yang
    Wen Yuan
    Ciqiang Zhuo
    Revista Matemática Complutense, 2014, 27 : 93 - 157
  • [27] Extension of Variable Triebel-Lizorkin-Type Space on Domains
    Sun, Qi
    Zhuo, Ciqiang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 201 - 216
  • [28] On the functions acting on Besov-type and Lizorkin-Triebel-type spaces
    Saadi, Mohamed
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (08) : 1497 - 1506
  • [29] Function algebras of Besov and Triebel-Lizorkin-type
    Bensaid, Fares
    Moussai, Madani
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1281 - 1300
  • [30] Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces
    Goncalves, Helena F.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)